Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Proper real reparametrization of rational ruled surfaces

dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorRecio, Tomás
dc.contributor.authorTabera, Luis F.
dc.contributor.authorRafael Sendra, J.
dc.contributor.authorVillarino, Carlos
dc.date.accessioned2023-06-20T00:08:34Z
dc.date.available2023-06-20T00:08:34Z
dc.date.issued2011
dc.description.abstractLet K subset of R be a computable field. We present an algorithm to decide whether a proper rational parametrization of a ruled surface, with coefficients in K((i), can be properly reparametrized over a real (i.e. embedded in R) finite field extension of K. Moreover, in the affirmative case, the algorithm provides a proper parametrization with coefficients in a real extension of K of degree at most 2.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense
dc.description.sponsorshipBanco de Santander-Universidad Complutense
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14649
dc.identifier.doi10.1016/j.cagd.2010.12.001
dc.identifier.issn0167-8396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S016783961000124X
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42069
dc.issue.number2
dc.journal.titleComputer aided geometric design
dc.language.isoeng
dc.page.final113
dc.page.initial102
dc.publisherElsevier
dc.relation.projectIDGAAR MTM2008-00272
dc.relation.projectIDPR34/07-15813
dc.relation.projectIDGAAR UCM 910444
dc.relation.projectIDMTM2008-04699-C03-(01,03)
dc.rights.accessRightsrestricted access
dc.subject.cdu512.72/.75
dc.subject.cdu515.162.4
dc.subject.keywordCurvas
dc.subject.keywordSuperficies
dc.subject.keywordIngeniería del soporte lógico
dc.subject.ucmSoftware
dc.subject.ucmGeometria algebraica
dc.subject.unesco3304.16 Diseño Lógico
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleProper real reparametrization of rational ruled surfaces
dc.typejournal article
dc.volume.number28
dcterms.referencesAndradas, C., Recio, T., Sendra, J.R., 1999. Base field restriction techniques for parametric curves. In: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC). ACM, New York, pp. 17–22 (electronic). Andradas, C., Recio, T., Sendra, J.R., Tabera, L.F., 2009. On the simplification of the coefficients of a parametrization. J. Symbolic Comput. 44 (2), 192–210. Buchberger, B., Collins, G.E., Loos, R., Albrecht, R. (Eds.), 1983. Computer Algebra. Second edition. Springer-Verlag, Vienna. Symbolic and algebraic computation. Dohm, M., 2009. Implicitization of rational ruled surfaces with μ-bases. J. Symbolic Comput. 44 (5), 479–489. Landsmann, G., Schicho, J., Winkler, F., Hillgarter, E., 2000. Symbolic parametrization of pipe and canal surfaces. In: ISSAC 2000. ACM, pp. 202–208. Langemyr, L., McCallum, S., 1989. The computation of polynomial greatest common divisors over an algebraic number field. J. Symbolic Comput. 8 (5), 429–448. Li, J., Shen, L.-Y., Gao, X.-S., 2008. Proper reparametrization of rational ruled surface. J. Comput. Sci. Tech. 23 (2), 290–297. Pérez-Díaz, S., 2006. On the problem of proper reparametrization for rational curves and surfaces. Comput. Aided Geom. Design 23 (4), 307–323. Peternell, M., Pottmann, H., 1997. Computing rational parametrizations of canal surfaces. In: Parametric Algebraic Curves and Applications. Albuquerque, NM, 1995, J. Symbolic Comput. 23 (2–3), 255–266. Recio, T., Sendra, J.R., 1997. Real reparametrizations of real curves. In: Parametric Algebraic Curves and Applications. Albuquerque, NM, 1995, J. Symbolic Comput. 23 (2–3), 241–254. Recio, T., Sendra, J.R., Tabera, L.F., Villarino, C., 2010. Generalizing circles over algebraic extensions. Math. Comput. 79 (270), 1067–1089. Schicho, J., 1998a. Rational parameterization of real algebraic surfaces. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock).ACM, New York,pp.302–308 (electronic). Schicho, J., 1998b. Rational parametrization of surfaces. J. Symbolic Comput. 26 (1), 1–29. Schicho, J., 2000a. Proper parametrization of real tubular surfaces. J. Symbolic Comput. 30 (5), 583–593. Schicho, J., 2000b. Proper parametrization of surfaces with a rational pencil. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews). ACM, New York, pp. 292–300 (electronic). Sederberg, T.W., Snively, J.P., 1987. Parametrization of cubic algebraic surfaces. In: The Mathematics of Surfaces, II. Cardiff, 1986. In: Inst. Math. Appl. Conf. Ser. New Ser., vol. 11. Oxford Univ. Press, New York, pp. 299–319. Sendra, J.R., Winkler, F., Pérez-Díaz, S., 2008. Rational Algebraic Curves: A Computer Algebra Approach. Algorithms and Computation in Mathematics, vol. 22. Springer, Berlin. Shafarevich, I.R., 1994. Varieties in projective space. In: Basic Algebraic Geometry, vol. 1. Second edition. Springer-Verlag, Berlin. Translated from the 1988 Russian edition and with notes by Miles Reid. Tabera, L.F., 2007. Two tools in algebraic geometry: construction of configurations in tropical geometry and hypercircles for the simplification of parametric curves. PhD thesis,Universidad de Cantabria, Université de Rennes I. Villarino, C. 2007. Algoritmos de optimalidad algebraica y de cuasi-polinomialidad para curvas racionales. PhD thesis, Universidad de Alcalá.
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01.pdf
Size:
219.72 KB
Format:
Adobe Portable Document Format

Collections