Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity

dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorWang, Bixiang
dc.contributor.authorWillie, Robert
dc.date.accessioned2023-06-20T17:10:53Z
dc.date.available2023-06-20T17:10:53Z
dc.date.issued1999-12
dc.description.abstractIn this paper, we establish the global fast dynamics for the time-dependent Ginzburg-Landau equations of superconductivity. We show the squeezing property and the existence of finite-dimensional exponential attractors for the system. In addition we prove the existence of the global attractor in L-2 x L-2 for the Ginzburg-Landau equations in two spatial dimensions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipMinisterio de Educacion y Cultura (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19906
dc.identifier.doi10.1002/(SICI)1099-1476(199912)22:18<1647::AID-MMA97>3.0.CO;2-W
dc.identifier.issn0170-4214
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1476(199912)22:18%3C1647::AID-MMA97%3E3.0.CO;2-W/pdf
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57902
dc.issue.number18
dc.journal.titleMathematical Methods in the Applied Sciences
dc.language.isoeng
dc.page.final1669
dc.page.initial1647
dc.publisherW. Spröβig
dc.relation.projectIDPB96-0648
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordGlobal attractor
dc.subject.keywordGinzburg-Landau equations
dc.subject.keywordSuperconductivity
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleAsymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity
dc.typejournal article
dc.volume.number22
dcterms.referencesAdams, R. A., Sobolev Spaces, Academic Press, New York, 1975. Chen, Z. M., Hoffmann, K. H. and Liang, J., ‘On a non-stationary Ginzburg–Landau superconductivity model’, Math. Meth. in the Appl. Sci., 16, 855–875 (1993). Du, Q., ‘Global existence and uniqueness of solutions of the time-dependent Ginzburg–Landau model for superconductivity’, Appl. Anal., 53, 1–17 (1994). Eden, A., Foias, C., Nicolaenko, B. and Temam, R., ‘Ensembles inertiels pour des equations devolution dissipatives’, C.R. Acad. Sci. Paris, 310, 559–562 (1990). Fleckinger-Pellé, J. and Kaper, H. G., ‘Gauges for the Ginzburg–Landau equations of superconductivity, Proc. ICIAM '95’, Z. Angew. Math. Mech., 76, 345–348 (1996). Fleckinger-Pellé, J., Kaper, H. G. and Takáč, P., ‘Dynamics of the Ginzburg–Landau equations of superconductivity’, Nonl. Anal. TMA, 32, 647–665 (1998). Girault, V. and Raviart, P., Finite Element Methods for Navier–Stokes Equations, Springer, New York, 1986. Gor'kov, L. P. and Eliashberg, G. M., ‘Generalizations of the Ginzburg–Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities’, Zh. Eksp. Teor. Fiz., 54, 612–626 (1968). Sov. Phys. JETP, 27, 328–334 (1968). Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer, New York, 1981. Kaper, H. G. and Takáč, P., ‘Ginzburg–Landau dynamics with a time dependent magnetic field’, Nonlinearity, 11, 291–305 (1998). Kaper, H. G., Wang, B. and Wang, S., ‘Determining nodes for the Ginzburg–Landau equations of superconductivity’, Discrete Continuous Dyn. Systems, 4, 205–224 (1998). Liang, J. and Tang, Q., ‘Asymptotic behaviour of an evolutionary Ginzburg–Landau superconductivity model’, J. Math. Annal. Appl., 195, 92–107 (1995). Schmid, A., ‘A time dependent Ginzburg–Landau equation and its application to the problem of resistivity in the mixed state’, Phys. Kondens. Mater. 5, 302–317 (1996). Takáč, P., ‘On the dynamical process generated by a superconductivity model’, Proc. ICIAM'95, Z. Angew. Math. Mech., 76, 349–352 (1996). Tang, Q., ‘On an evolutionary system of Ginzburg–Landau equations with fixed total magnetic flux’, Commun. Partial Differential Equation 20, 1–36 (1995). Tang, Q. and Wang, S., ‘Time dependent Ginzburg–Landau equations of superconductivity’, Physica D, 88, 139–166 (1995). Temam, R., Infintie Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1998 Tinkham, M., Introduction to Superconductivity, 2nd edn., McGraw-Hill, New York, 1996. Wang, B. and Wang, S., ‘Gevrey class regularity for the solutions of the Ginzburg–Landau equations of superconductivity’, Discrete Continuous Dyn. Systems 4, 507–522 (1998). Wang, S. and Zhan, M., Lp &Solutions to the time-dependent Ginzburg-Landau equations of superconductivity, preprint, 1996
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal47.pdf
Size:
166.43 KB
Format:
Adobe Portable Document Format

Collections