Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine Learning of Multi-Modal Tumor Imaging Reveals Trajectories of Response to Precision Treatment

dc.contributor.authorMansouri, Nesrin
dc.contributor.authorBalvay, Daniel
dc.contributor.authorZenteno, Omar
dc.contributor.authorFacchin, Caterina
dc.contributor.authorYoganathan, Thulaciga
dc.contributor.authorViel, Thomas
dc.contributor.authorLópez Herraiz, Joaquín
dc.contributor.authorTavitian, Bertrand
dc.contributor.authorPérez Liva, Mailyn
dc.date.accessioned2023-06-22T12:43:24Z
dc.date.available2023-06-22T12:43:24Z
dc.date.issued2023
dc.description"Funding: This work received funding from the Cancer Research for Personalized Medicine—CARPEM project (Site de Recherche Intégré sur le Cancer SIRIC), from the Plan Cancer Physicancer (grant C16025KS), and from the Région Ile-de-France. In vivo imaging was performed at the Life Imaging Facility of Université Paris Cité (Plateforme Imageries du Vivant - PIV), supported by France Life Imaging (grant ANR-11-INBS-0006) and Infrastructures Biologie-Santé (IBiSa). Nesrin Mansouri received a scholarship from the Ministère de l’Enseignement Supérieur et de la Recherche. This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement no. 101030046 of M. P.-L." "Acknowledgments: The authors thank Laure Fournier, Judith Favier, Charlotte Lussey-Lepoutre,Irène Buvat, Béatrice Berthon and J.M. Udías for rich scientific advice and discussions"
dc.description.abstractThe standard assessment of response to cancer treatments is based on gross tumor characteristics, such as tumor size or glycolysis, which provide very indirect information about the effect of precision treatments on the pharmacological targets of tumors. Several advanced imaging modalities allow for the visualization of targeted tumor hallmarks. Descriptors extracted from these images can help establishing new classifications of precision treatment response. We propose a machine learning (ML) framework to analyze metabolic–anatomical–vascular imaging features from positron emission tomography, ultrafast Doppler, and computed tomography in a mouse model of paraganglioma undergoing anti-angiogenic treatment with sunitinib. Imaging features from the follow-up of sunitinib-treated (n = 8, imaged once-per-week/6-weeks) and sham-treated (n = 8, imaged once-per-week/3-weeks) mice groups were dimensionally reduced and analyzed with hierarchical clustering Analysis (HCA). The classes extracted from HCA were used with 10 ML classifiers to find a generalized tumor stage prediction model, which was validated with an independent dataset of sunitinib-treated mice. HCA provided three stages of treatment response that were validated using the best-performing ML classifier. The Gaussian naive Bayes classifier showed the best performance, with a training accuracy of 98.7 and an average area under curve of 100. Our results show that metabolic–anatomical–vascular markers allow defining treatment response trajectories that reflect the efficacy of an anti-angiogenic drug on the tumor target hallmark.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCancer Research for Personalized Medicine—CARPEM project (Site de Recherche Intégré sur le Cancer SIRIC)
dc.description.sponsorshipPlan Cancer Physicancer
dc.description.sponsorshipRégion Ile-de-France
dc.description.sponsorshipe Life Imaging Facility of Université Paris Cité (Plateforme Imageries du Vivant - PIV)
dc.description.sponsorshipFrance Life Imaging
dc.description.sponsorshipInfrastructures Biologie-Santé (IBiSa)
dc.description.sponsorshipMinistère de l’Enseignement Supérieur et de la Recherche
dc.description.sponsorshipEuropean Union’s Horizon 2020 research and innovation program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77060
dc.identifier.doi10.3390/cancers15061751
dc.identifier.issn2072-6694
dc.identifier.officialurlhttps://doi.org/10.3390/cancers15061751
dc.identifier.relatedurlhttps://www.mdpi.com/2072-6694/15/6/1751
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73096
dc.issue.number6
dc.journal.titleCancers
dc.language.isospa
dc.page.initial1751
dc.relation.projectIDGrant C16025KS
dc.relation.projectIDGrant ANR-11-INBS-0006
dc.relation.projectIDMarie Sklodowska-Curie Grant Agreement no. 101030046 of M. P.-L.
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordmulti-modal imaging
dc.subject.keywordparaganglioma
dc.subject.keywordmachine learning
dc.subject.keywordhierarchical clustering
dc.subject.keywordtreatment response
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleMachine Learning of Multi-Modal Tumor Imaging Reveals Trajectories of Response to Precision Treatment
dc.typejournal article
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublicationff1ea731-78c3-4e37-a602-13cc8037ae8e
relation.isAuthorOfPublicationce19dc3c-ecdb-498e-8574-4ea96da8d98d
relation.isAuthorOfPublication.latestForDiscoveryff1ea731-78c3-4e37-a602-13cc8037ae8e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cancers-15-01751 (3).pdf
Size:
3.71 MB
Format:
Adobe Portable Document Format

Collections