Stability of the fixed-point property and universal maps

dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-20T17:03:55Z
dc.date.available2023-06-20T17:03:55Z
dc.date.issued1989-01
dc.description.abstractIn this interesting paper, the author gives a stability condition for the fixed point property in terms of K. Borsuk's fundamental metric on a hyperspace of a compact metric space. This condition is equivalent to that originally given by V. L. Klee [Colloq. Math. 8 (1961), 43–46] but it reflects richer properties. By replacing exact conditions with their proximate analogues, the author introduces a notion of proximately universal maps and studies many of their properties. In particular, he investigates their preservation under composition with weakly refinable and refinable maps to get improvements of results of E. E. Grace [Proc. Amer. Math. Soc. 98 (1986), no. 2, 329–335] and C. W. Ho [Fund. Math. 111 (1981), no. 2, 169–177].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17126
dc.identifier.doi10.2307/2046760
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.ams.org/journals/proc/1989-105-01/S0002-9939-1989-0931746-X/S0002-9939-1989-0931746-X.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57713
dc.issue.number1
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final230
dc.page.initial221
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.keywordFixed-point and coincidence theorems
dc.subject.keywordWeak and generalized continuity
dc.subject.keywordShape theory
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleStability of the fixed-point property and universal maps
dc.typejournal article
dc.volume.number105
dcterms.referencesK. Borsuk, Sur un problème de MM. Kuratowski et Ulam, Fund. Math. 31 (1938), 154-559. _, On a metrization of the hyperspace of a metric space, Fund. Math. 94 (1977), 191-207. _, On nearly extendable maps. Bull. Acad. Polon Sei. 23 (1975), 753-760. _, On the Lefschetz-Hopffixed point theorem for nearly extendable maps, Bull. Acad. Polon. Sei. 23 (1975), 1273-1279. Z. Cerin and A. P. Sostak, Some remarks on Borsuk ' s fundamental metric, Colloq. Math. Soc. Janos Bolyai, Budapest, 1978, pp. 233-252. M. H. Clapp, On a generalization of absolute neighborhood retracts, Fund. Math. 70 (1971), 117-130. J. Ford and J. W. Rogers, Jr., Refinable maps, Colloq. Math. 39 (1978), 263-269. E. E. Grace, Refinable maps and the proximate fixed point property. Topology Proc. 10 (1985), 293-303. _, Generalized refinable maps, Proc. Amer. Math. Soc. 98 (1986), 329-335. C. Ho, On a stability theorem for the fixed point property, Fund. Math. Ill (1981), 169-177. W. Holsztynski, Une généralisation du théorème de Brouwer sur les points invariants, Bull. Acad. Polon Sei. 12 (1964), 603-606. _, On the composition and products of universal mappings, Fund. Math. 64 (1969), 181- 188. V. L. Klee, Stability of the fixed point property, Colloq. Math. 8 (1961), 43-46. V. L. KJee and A. Yandl, Some proximate concepts in topology, Symposia Math. Publ. Inst. Naz. di Alta Matemática, Academic Press 16 (1974), 21-39. K. Kuratowski, Topology, Volume II, Academic Press, New York, PWN, Warszawa, 1968. C. W. Saalfrank, Neighborhood retraction generalized for compact Hausdorff spaces, Portugal Math. 20(1961), 11-16.
dspace.entity.typePublication
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscoveryf54f1d9d-37e9-4c15-9d97-e34a6343e575

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodSanjurjo34.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format

Collections