Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uniform approximation of continuous mappings by smooth mappings with no critical points on Hilbert manifolds

Loading...
Thumbnail Image

Full text at PDC

Publication date

2004

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

DUKE UNIV PRESS
Citations
Google Scholar

Citation

Abstract

We prove that every continuous mapping from a separable infinite-dimensional Hilbert space X into R-m can be uniformly approximated by C-infinity-smooth mappings with no critical points. This kind of result can be regarded as a sort of strong approximate version of the Morse-Sard theorem. Some consequences of the main theorem are as follows. Every two disjoint closed subsets of X can be separated by a one-codimensional smooth manifold that is a level set of a smooth function with no critical points. In particular, every closed set in X can be uniformly approximated by open sets whose boundaries are C-infinity-smooth one-codimensional submanifolds of X. Finally, since every Hilbert manifold is diffeomorphic to an open subset of the Hilbert space, all of these results still hold if one replaces the Hilbert space X with any smooth manifold M modeled on X.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections