Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Asymptotic Theory for Extended Asymmetric Multivariate GARCH Processes

dc.contributor.authorAsai, Manabu
dc.contributor.authorMcAleer, Michael
dc.date.accessioned2023-06-18T10:26:03Z
dc.date.available2023-06-18T10:26:03Z
dc.date.issued2016
dc.description.abstractThe paper considers various extended asymmetric multivariate conditional volatility models, and derives appropriate regularity conditions and associated asymptotic theory. This enables checking of internal consistency and allows valid statistical inferences to be drawn based on empirical estimation. For this purpose, we use an underlying vector random coefficient autoregressive process, for which we show the equivalent representation for the asymmetric multivariate conditional volatility model, to derive asymptotic theory for the quasi-maximum likelihood estimator. As an extension, we develop a new multivariate asymmetric long memory volatility model, and discuss the associated asymptotic properties.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39131
dc.identifier.issn2341-2356
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/27597
dc.issue.number14
dc.language.isoeng
dc.page.total23
dc.publisherFacultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.jelC13
dc.subject.jelC32
dc.subject.jelC58
dc.subject.keywordMultivariate conditional volatility
dc.subject.keywordVector random coefficient autoregressive process
dc.subject.keywordAsymmetry
dc.subject.keywordLong memory
dc.subject.keywordDynamic conditional correlations
dc.subject.keywordRegularity conditions
dc.subject.keywordAsymptotic properties.
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleAsymptotic Theory for Extended Asymmetric Multivariate GARCH Processes
dc.typetechnical report
dc.volume.number2016
dcterms.referencesAmemiya, T. (1985), Advanced Econometrics, Harvard University Press, Cambridge, MA, USA. Baba, Y., R. Engle, D. Kraft and K. Kroner (1985), “Multivariate Simultaneous Generalized ARCH”, Unpublished Paper, University of California, San Diego. Baillie R. T., T. Bollerslev, and H. O. Mikkelsen (1996), “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 74, 3–30. Bauwens, L., S. Laurent, and J.V.K. Rombouts (2006), “Multivariate GARCH: A Survey”, Journal of Applied Econometrics, 21, 79–109 Bollerslev, T., and H. O. Mikkelsen (1996), “Modeling and Pricing Long-Memory in Stock Market Volatility”, Journal of Econometrics, 73, 151–184. Comte, F. and O. Lieberman (2003), “Asymptotic Theory for Multivariate GARCH Processes”, Journal of Multivariate Analysis, 84, 61-4. Engle, R.F. and K.F. Kroner (1995), “Multivariate Simultaneous Generalized ARCH”, Econometric Theory, 11, 122–150. Glosten, L., R. Jagannathan, and D. Runkle (1992), “On the Relation between the Expected Value and Volatility of Nominal Excess Returns on Stocks”, Journal of Finance, 46, 1779–1801. Jeantheau, T. (1998), “Strong Consistency of Estimators for Multivariate ARCH Models”, Econometric Theory, 14, 70–86. Kroner, K. and V. Ng (1998), “Modeling Asymmetric Comovements of Asset Returns”, Review Financial Studies, 11, 817–844. Ling, S., and M. McAleer (2002), “Necessary and Sufficient Moment Conditions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models”, Econometric Theory, 18, 722–729. Ling, S. and M. McAleer (2003), “Asymptotic Theory for A Vector ARMA-GARCH Model”, Econometric Theory, 19, 278–308. Martinet, G. and M. McAleer (2016), “On The Invertibility of EGARCH(p,q)”, to appear in Econometric Reviews. McAleer, M. (2005), “Automated Inference and Learning in Modeling Financial Volatility”, Econometric Theory, 21, 232–261. McAleer, M., F. Chan, S. Hoti and O. Lieberman(2008), “Generalized Autoregressive Conditional Correlation”, Econometric Theory, 24, 1554–1583. McAleer, M. and C. Hafner (2014), “A One Line Derivation of EGARCH”, conometrics, 2, 92–97. Silvennoinen, A., and T. Ter¨asvirta (2009), “Multivariate GARCH Models”, In T. G. Andersen, R.A. Davis, J.-P. Kreiss, and T. Mikosch (eds.), Handbook of Financial Time Series, 201–229, New York: Springer. McAleer, M., S. Hoti and F. Chan (2009), “Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility”, Econometric Reviews, 28, 422–440. M¨uller, U., M. Dacorogna, R. Dav, R. Olsen, O. Pictet, and J. von Weizsacker (1997), “Volatilities of Different Time Resolutions Analysing The Dynamics of Market Components”, Journal of Empirical Finance, 4, 213–239. Nicholls, D.F. and B.G. Quinn (1981), Random Coefficient Autoregressive Models: An Introduction, Lecture Notes in Statistics 11, New York: Springer. Tsay, R. (1987), “Conditional Heteroscedastic Time Series Models”, Journal of the American Statistical Association, 82, 590–604. Tweedie, R. (1988), “Invariant Measure for Markov Chains with No Irreducibility Assumptions”, Journal of Applied Probability, 25A, 275–285.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1614.pdf
Size:
285.68 KB
Format:
Adobe Portable Document Format