Fingerprinting Electronic Molecular Complexes in Liquid

dc.contributor.authorNirmalraj, Peter
dc.contributor.authorLa Rosa, Andrea
dc.contributor.authorThompson, Damien
dc.contributor.authorSousa, Marilyne
dc.contributor.authorMartín, Nazario
dc.contributor.authorGotsmann, Bernd
dc.contributor.authorRiel, Heike
dc.date.accessioned2023-06-18T05:43:24Z
dc.date.available2023-06-18T05:43:24Z
dc.date.issued2016-01-08
dc.description.abstractPredicting the electronic framework of an organic molecule under practical conditions is essential if the molecules are to be wired in a realistic circuit. This demands a clear description of the molecular energy levels and dynamics as it adapts to the feedback from its evolving chemical environment and the surface topology. Here, we address this issue by monitoring in real-time the structural stability and intrinsic molecular resonance states of fullerene (C60)-based hybrid molecules in the presence of the solvent. Energetic levels of C60 hybrids are resolved by in situ scanning tunnelling spectroscopy with an energy resolution in the order of 0.1 eV at room-temperature. An ultra-thin organic spacer layer serves to limit contact metal-molecule energy overlap. The measured molecular conductance gap spread is statistically benchmarked against first principles electronic structure calculations and used to quantify the diversity in electronic species within a standard population of molecules. These findings provide important progress towards understanding conduction mechanisms at a single-molecular level and in serving as useful guidelines for rational design of robust nanoscale devices based on functional organic molecules.
dc.description.departmentDepto. de Química Orgánica
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/41599
dc.identifier.doi10.1038/srep19009.
dc.identifier.issn2045-2322
dc.identifier.officialurlhttp://www.nature.com/articles/srep19009
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23156
dc.journal.titleScientific Reports
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.projectIDTO COME (275074)
dc.relation.projectIDCHIRALLCARBON (320441)
dc.relation.projectIDFUNMOLS (212942)
dc.relation.projectIDCTQ2011-24652
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu547
dc.subject.ucmQuímica orgánica (Química)
dc.subject.unesco2306 Química Orgánica
dc.titleFingerprinting Electronic Molecular Complexes in Liquid
dc.typejournal article
dc.volume.number6
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
srep19009.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format

Collections