Síntesis mediante química sol gel de compuestos Li_(1+x)M^(III)_(x)Ti_(2-x)(PO_(4))_(3) con estructura tipo Nasicon. Estudio de la relación microestructura-propiedades eléctricas

dc.contributor.authorPérez Estébanez, Marta
dc.contributor.authorRivera Calzada, Alberto Carlos
dc.contributor.authorLeón Yebra, Carlos
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.contributor.authorIsasi Marín, Josefa
dc.date.accessioned2023-06-20T03:52:22Z
dc.date.available2023-06-20T03:52:22Z
dc.date.issued2010-01
dc.description© Sociedad Española de Cerámica y Vidrio. National Meeting on Electroceramics (9. 2009. Madrid). Este trabajo ha sido realizado gracias al proyecto PR34/07-15895 BSCH-UCM.
dc.description.abstractHaciendo uso de la química sol-gel, se han preparado ortofosfatos de composición LiTi_(2)(PO_(4))_(3) y Li_(1.05)(Cr/Fe)_(0.05)Ti_(1.95)(PO_(4))_(3) a temperaturas moderadas mediante el método Pechini. Estas fases han sido caracterizadas estructural y microestructuralmente por difracción de rayos X de polvo y microscopía electrónica de barrido (SEM), encontrándose que todas cristalizan en una estructura tipo NASICON, con parámetros de red muy similares. El dopaje con Fe y Cr permite aumentar la densidad de las muestras en la sinterización, mejorando de forma apreciable su conductividad iónica. Se ha observado un incremento de hasta cuatro órdenes de magnitud en la conductividad a temperatura ambiente obteniéndose una energía de activación de 0.29 eV para el material dopado con Cr.
dc.description.abstractCompounds of formula Li_(1+x)M^(III)_(x)Ti_(2-x)(PO_(4))_(3) with M^(III)=Cr,Fe and x=0 and 0.05 have been prepared at soft temperatures using the Pechini synthesis method, based on sol-gel chemistry. The structural and microstructural characterization by X-ray diffraction and Scanning Electron Microscopy (SEM), shows that all of them crystallize in a NASICON-type structure with similar lattice parameters. Doping with Fe and Cr, causes an increase of the density of the samples after sinterization what clearly improves the ionic conductivity of the original material, LiTi_(2)(PO_(4))_(3) until values of 9x10^(-4) S cm^(-1) at room temperature in the chromium-doped material.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipBSCH-UCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30367
dc.identifier.citation1) “Nature insight: materials for clean energy”, Nature, 414, 331-377 (2001). 2) X. Xu, Z. Wen, X. Yang, J. Zhang, Z. Gu, “High lithium ion conductivity glass-ceramics in Li_(2)O-Al_(2)O_(3)-TiO_(2)-P_(2)O_(5) from nanoscaled glassy powders by mechanical milling”, Sol. State Ionics, 177, 2611-2615 (2006). 3) J. S. Thokchom, B. Kumar, “Microstructural effects on the superionic conductivity of a lithiated glass-ceramic”, Sol. State Ionics, 177, 727-732 (2006). 4) J. Santos-Peña, M. Cruz-Yusta, P. Soudan, S. Franger, J. J. Cuart-Pascual, “Carbon and transition metal containing titanium phosphates as electrodes for lithium ion batteries” , Sol. State Ionics, 177, 2667-2674 (2006). 5) M. Barré, M. P. Crosnier-López, F. LeBerre, E. Suard, J. L. Fourquet, ”Synthesis and structural study of a new NASICON-type solid solution: Li_(1+x)La_(x/3)Zr_(2)(PO_(4))_(3)”, J. Sol. State Chem., 188, 1011-1019 (2007). 6) K. Nagata, T. Nanno, “All solid battery with phosphate compounds made through sintering process”, J. Power Sources, 174, 832-837 (2007). 7) P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascón, C. Masquelier, “Room-temperature songle-phase Li insertion/extraction in nanoscale Lix FePO_(4)”, Nature Materials, 7, 741-747, (2008). 8) J. B. Goodenough, H. Y-P. Hong, J. A. Kafalas, “Fast Na+-ion transport in skeleton structures”, Mat. Re. Bull., 11, 203-220 (1976). 9) F. E. Mouahid, M. Zahir, P. Maldonado-Manso, S. Bruque, E. R. Losilla, M. A. G. Aranda, A. Rivera, C. León, J. Santamaría, “Na-Li exchange of Na_(1+x)Ti_(2-x)Al_(x)(PO_(4))_(3)(0.6≤x≤0.9) NASICON series: a Rietveld and Impedance study”, J. Mater. Chem., 11, 3258-3263 (2001). 10) A. S. Best, M. Forsyth, D. R. MacFarlane, “Stoichiometric changes in Lithium conducting materials based on Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3): impedance, X-ray and NMR studies”, Sol. State Ionics, 136-137, 339-344 (2001). 11) K. Arbi, M.A. Paris, J. Sanz, “Lithium exchange processes in the conduction network of the Nasicon LiTi_(2-x)Zr_(x)(PO_(4))_(3) series (0≤x≤2)”, J. Phys Chem. B, 110, 6454-6457 (2006). 12) M. A. Paris, A. Martínez-Juárez, J. M. Rojo, J. Sanz, “Lithium mobility in the NASICON-type compound LiTi_(2)(PO_(4))_(3) by nuclear magnetic resonance and impedance spectroscopies“, J. Phys.: Condens. Matter, 8, 5355-5366 (1993). 13) H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, “Ionic conductivity of solid electrolytes based on lithium titanium phosphate”, J. Electrochem. Soc., 137, 1023-1027 (1990). 14) H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, “Electrical properties of sintered lithium titanium phosphate ceramics (Li_(1+x)M_(x)Ti_(2-x)(PO_(4))_(3´) M^(3+)=Al^(3+), Sc_(3+) or Y_(3+))”, Chem. Lett., 1825-1828 (1990). 15) K. Arbi, M. Tabellout, M. G. Lazarraga, J. M. Rojo, J. Sanz “Non-Arrhenius conductivity in the Fast lithium conductor Li_(1.2)Ti_(1.8)Al_(0.2)(PO_(4))_(3): A Li^(7) NMR and electric impedance study”, Phys. Rev. B, 72, 097302-1-7 (2005). 16) M. P. Pechini, USA, Num 3: 330, (11-07-1967). 17) T. Roisnel, J. Rodríguez-Carvajal, WinPLOTR, plotr@llb.saclay.cea.fr, http://www.llb.cea.fr/fullweb/winplotr/winplotr.htm. 18) C.R. Mariappan, C. Galven, M.P. Crosnier-López, F. Le Berre, O. Bohnke, “Synthesis of nanostructured LiTi_(2)(PO_(4))_(3) powder by a Pechini-type polymerizable complex method”, J. Sil. State Chem., 179, 450-456 (2006). 19) S. Wong, P.J. Newman, A. S. Best, K. M. Nairn, D. R. MacFarlane, M. Forsyth, “ Towards elucidating microscopic structural changes in Li-ion conductors Li_(1+y)Ti_(2-y)Al_(y)(PO_(4))_(3) and Li_(1+y)Ti_(2-y)Al_(y)(PO_(4))_(3-x)(MO_(4))_(x) (M = V and Nb): X-ray and Al^(27) and P^(31) NMR studies, J. Mat. Chem., 8, 2199-2203 (1998). 20) M. Catti, S. Stramare, “Lithium location in NASICON-type Li^(+) conductors by neutron diffraction II. Rhombohedral α-LiZr_(2)(PO_(4))_(3) at T = 423K”, Solid State Ionics, 136-137, 489-494. 21) H. Aono, E. Sugimoto, Y. Sadoka, N. Imanaka G. Adachi, “Ionic conductivity and sinterability of lithium titanium phosphate system”, Solid State Ionics, 40/47, 38-42 (1990). 22) H. Aono, E. Sugimoto, Y. Sadoka, N. Imanaka G. Adachi, “The electrical properties of ceramic electrolytes for Li_(1+x)M_(x)Ti_(2-x)(PO_(4))_(3) + y Li_(2)O, M = Ge, Sn, Hf and Zr systems”, J. Electrochem. Soc., 140, 1827-1833 (1993). 23) J. Fu, “Superionic conductivity of glass-ceramics in the system Al_(2)O_(3) – TiO_(2)– P_(2)O_(5)”, Solid State Ionics, 96, 195-200 (1997).
dc.identifier.issn0366-3175
dc.identifier.officialurlhttp://boletines.secv.es/upload/20100302131405.20104941.pdf
dc.identifier.relatedurlhttp://boletines.secv.e
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44593
dc.issue.number1
dc.journal.titleBoletín de la Sociedad Española de Cerámica y Vidrio
dc.language.isospa
dc.page.final46
dc.page.initial41
dc.publisherSociedad Española de Cerámica y Vidrio
dc.relation.projectIDPR34/07-15895
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu537
dc.subject.keywordLithium titanium phosphate
dc.subject.keywordSupersonic conductivity
dc.subject.keywordIonic-conductivity
dc.subject.keywordFlass-ceramics
dc.subject.keywordX-ray
dc.subject.keywordImpedance
dc.subject.keywordLi_(2)O-Al_(2)O_(3)-TiO_(2)-P_(2)O_(5)
dc.subject.keywordLiTi_(2)(PO_(4))_(3)
dc.subject.keywordElectrolytes
dc.subject.keywordConductors.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleSíntesis mediante química sol gel de compuestos Li_(1+x)M^(III)_(x)Ti_(2-x)(PO_(4))_(3) con estructura tipo Nasicon. Estudio de la relación microestructura-propiedades eléctricas
dc.title.alternativeSynthesis of Li_(1+x)M^(III)_(x)Ti_(2-x)(PO_(4))_(3) with nasicon structure, using sol-gel methods. Study of the relationship microstructure-electrical properties
dc.typejournal article
dc.volume.number49
dspace.entity.typePublication
relation.isAuthorOfPublication6ad69803-800b-4244-9927-e7e52dc03f84
relation.isAuthorOfPublication65d45b0a-357f-4ec4-9f97-0ffd3e1cbdcc
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication57702872-f198-424a-88e5-360c3ab1ae93
relation.isAuthorOfPublication.latestForDiscovery6ad69803-800b-4244-9927-e7e52dc03f84
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeonC25libre.pdf
Size:
524.95 KB
Format:
Adobe Portable Document Format
Collections