Asymptotic expansion for damped wave equations with periodic coefficients
dc.contributor.author | Orive, R. | |
dc.contributor.author | Zuazua Iriondo, Enrique | |
dc.contributor.author | Pazoto, A. | |
dc.date.accessioned | 2023-06-20T16:48:24Z | |
dc.date.available | 2023-06-20T16:48:24Z | |
dc.date.issued | 2001 | |
dc.description.abstract | We consider a linear dissipative wave equation in IRN with periodic coefficients. By means of Bloch wave decomposition, we obtain an expansion of solutions as t ! 1 and conclude that, in a first approximation, the solutions behave as the homogenized heat kernel. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CAPES | |
dc.description.sponsorship | DGES | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12881 | |
dc.identifier.doi | 10.1142/S0218202501001331 | |
dc.identifier.issn | 0218-2025 | |
dc.identifier.officialurl | http://0www.worldscinet.com.cisne.sim.ucm.es/m3as/mkt/archive.shtml | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57079 | |
dc.issue.number | 7 | |
dc.journal.title | Mathematical Models and Methods in Applied Sciences | |
dc.language.iso | eng | |
dc.page.final | 1310 | |
dc.page.initial | 1285 | |
dc.publisher | World Scientific | |
dc.relation.projectID | BEX1432/99-0 | |
dc.relation.projectID | PB96-0663 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Large Time | |
dc.subject.keyword | R-N | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Asymptotic expansion for damped wave equations with periodic coefficients | |
dc.type | journal article | |
dc.volume.number | 11 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8b66f606-26f7-4011-9dfb-585ec9c520ea | |
relation.isAuthorOfPublication.latestForDiscovery | 8b66f606-26f7-4011-9dfb-585ec9c520ea |
Download
Original bundle
1 - 1 of 1