Problema de Waring para formas binarias reales
Loading...
Download
Official URL
Full text at PDC
Publication date
2024
Defense date
23/03/2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
El Problema de Waring sobre anillos de polinomios aborda el problema de la reescritura de un polinomio homogéneo de grado d como una suma finita de potencias d-ésimas de formas lineales. El objetivo de este trabajo es el estudio de este problema en el caso de polinomios homogéneos reales en dos variables o formas binarias reales. Uno de los aspectos relacionados con este Problema de Waring más detalladamente estudiado consiste en determinar la longitud de estas descomposiciones o bien acotarla. Nuestro trabajo proporciona un método constructivo para obtener una descomposición de Waring real (WD) para cualquier forma binaria real dada, cuya longitud sea como máximo el grado de dicha forma (capítulo 2). Conocida la cota anterior, adaptamos el algoritmo de Sylvester (resultado obtenido en el s. XIX para el caso de formas binarias complejas) al caso real, con el fin de determinar una WD con longitud mínima, es decir, la que da el rango. Usamos matrices bezoutianas para lograr esta descomposición óptima. Este resultado se encuentra en el capítulo 3...
Waring's Problem over polynomial rings deals with the problem of decomposing a homogeneous polynomial of degree d as a linear combination of dth powers of linear forms. The goal of this work is to study this problem in the case of real homogeneous polynomials in two variables or real binary forms. One of the aspects related to Waring's Problem is to determine the length of these decompositions or to bound it. Our work proposes (Chapter 2) a constructive method to obtain a real Waring decomposition (WD) for any given real binary form, whose length is at most the degree of that form. In Chapter 3, knowing the previous boundary, we adapt Sylvester's Algorithm (result obtained in the XIX century for the case of complex binary forms) to the real case, in order to determine a WD with minimum length, that is, the one that gives the rank. We use Bezoutian matrices to achieve this optimal decomposition...
Waring's Problem over polynomial rings deals with the problem of decomposing a homogeneous polynomial of degree d as a linear combination of dth powers of linear forms. The goal of this work is to study this problem in the case of real homogeneous polynomials in two variables or real binary forms. One of the aspects related to Waring's Problem is to determine the length of these decompositions or to bound it. Our work proposes (Chapter 2) a constructive method to obtain a real Waring decomposition (WD) for any given real binary form, whose length is at most the degree of that form. In Chapter 3, knowing the previous boundary, we adapt Sylvester's Algorithm (result obtained in the XIX century for the case of complex binary forms) to the real case, in order to determine a WD with minimum length, that is, the one that gives the rank. We use Bezoutian matrices to achieve this optimal decomposition...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 23-03-2023