Exchange bias in single-crystalline CuO nanowires

dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorDíaz-Guerra Viejo, Carlos
dc.contributor.authorVila Santos, María
dc.date.accessioned2023-06-20T03:36:40Z
dc.date.available2023-06-20T03:36:40Z
dc.date.issued2010-05-10
dc.description©2010 American Institute of Physics. This work was supported by MEC through projects MAT2006-01259 and MAT2009-07882.
dc.description.abstractExchange anisotropy has been observed and investigated in single-crystalline CuO nanowires grown by thermal oxidation of Cu. The exchange bias field decreases by increasing temperature and can be tuned by the strength of the cooling field. A training effect has also been observed. The obtained results can be understood in terms of a phenomenological core-shell model, where the core of the CuO nanowire shows antiferromagnetic behavior and the surrounding shell behaves as a spin glass-like system due to uncompensated surface spins.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC (Ministerio de Educación y Ciencia, España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23728
dc.identifier.doi10.1063/1.3428658
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3428658
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44035
dc.issue.number19
dc.journal.titleApplied physics Letters
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDMAT2006-01259
dc.relation.projectIDMAT2009-07882
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordNanostructures
dc.subject.ucmFísica de materiales
dc.titleExchange bias in single-crystalline CuO nanowires
dc.typejournal article
dc.volume.number96
dcterms.references1. V. Franco-Puntes, K. M. Krishnan, and A. P. Alivisatos, Science 291, 2115 (2001). http://dx.doi.org/10.1126/science.1057553 2. A. Hultgren, M. Tanase, C. S. Chen, G. J. Meyer, and D. H. Reich, J. Appl. Phys. 93, 7554 (2003). http://dx.doi.org/10.1063/1.1556204 3. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, Phys. Rep. 422, 65 (2005). 4. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). http://dx.doi.org/10.1016/S0304-8853(98)00266-2 5. C. Tsang, J. Appl. Phys. 55, 2226 (1984). http://dx.doi.org/10.1063/1.333619 6. R. Jungblut, R. Coehoorn, M. T. Johnson, J. van de Stegge, and A. Reinders, J. Appl. Phys. 75, 6659 (1994). http://dx.doi.org/10.1063/1.356888 7. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001). http://dx.doi.org/10.1103/PhysRevB.64.174420 8. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogués, Nature (London) 423, 850 (2003). http://dx.doi.org/10.1038/nature01687 9. E. L. Salabaş, A. Rumplecker, F. Kleitz, F. Radu, and F. Schüth, Nano Lett. 6, 2977 (2006). http://dx.doi.org/10.1021/nl060528n 10. J. Y. Yu, S. L. Tang, X. K. Zhang, L. Zhai, Y. G. Shi, Y. Deng, and Y. W. Du, Appl. Phys. Lett. 94, 182506 (2009). http://dx.doi.org/10.1063/1.3132056 11. J. B. Reitz and E. I. Solomon, J. Am. Chem. Soc. 120, 11467 (1998). http://dx.doi.org/10.1021/ja981579s 12. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature (London) 407, 496 (2000). http://dx.doi.org/10.1038/35035045 13. C. T. Hsieh, J. M. Chen, H. H. Lin, and C. H. Shih, Appl. Phys. Lett. 83, 3383 (2003). http://dx.doi.org/10.1063/1.1619229 14. M. A. García, E. Fernández Pinel, J. de la Venta, A. Quesada, V. Bouzas, J. F. Fernández, J. J. Romero, M. S. Martín González, and J. L. Costa-Krämer, J. Appl. Phys. 105, 013925 (2009). http://dx.doi.org/10.1063/1.3060808 15. X. Jiang, T. Herricks, and Y. Xia, Nano Lett. 2, 1333 (2002). http://dx.doi.org/10.1021/nl0257519 16. V. Salgueiriño-Maceira, M. A. Correa-Duarte, M. Bañobre-López, M. Grzelczak, M. Farle, L. M. Liz-Marzán, and J. Rivas, Adv. Funct. Mater. 18, 616 (2008). http://dx.doi.org/10.1002/adfm.200700846 17. See supplementary material at http://dx.doi.org/10.1063/1.3428658 for ZFC and FC hysteresis loops measured at 2 K in the ±15000 Oe range and for field cycle dependence of Heb.[Supplementary Material] 18. E. C. Passamani, C. Larica, C. Marques, A. Y. Takeuchi, J. R. Proveti, and E. Favre-Nicolin, J. Magn. Magn. Mater. 314, 21 (2007). http://dx.doi.org/10.1016/j.jmmm.2007.02.008 19. J. Nogués, C. Leighton, and I. K. Schuller, Phys. Rev. B 61, 1315 (2000). http://dx.doi.org/10.1103/PhysRevB.61.1315 20. M. Patra, S. Majumdar, and S. Giri, Solid State Commun. 149, 501 (2009). http://dx.doi.org/10.1016/j.ssc.2009.01.019 21. L. Del Bianco, D. Fiorani, A. M. Testa, E. Bonetti, and L. Signorini, Phys. Rev. B 70, 052401 (2004). http://dx.doi.org/10.1103/PhysRevB.70.052401
dspace.entity.typePublication
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublicationb1b44979-3a0d-45d7-aa26-a64b0dbfee18
relation.isAuthorOfPublication.latestForDiscoveryb1b44979-3a0d-45d7-aa26-a64b0dbfee18

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ39libre.pdf
Size:
475.36 KB
Format:
Adobe Portable Document Format

Collections