Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Global search metaheuristics for planning transportation of multiple petroleum products in a multi-pipeline system

dc.contributor.authorCruz García, Jesús Manuel de la
dc.contributor.authorAndrés Toro, Bonifacio de
dc.contributor.authorHerrán, A.
dc.date.accessioned2023-06-20T03:34:21Z
dc.date.available2023-06-20T03:34:21Z
dc.date.issued2012-02-10
dc.description© 2011 Elsevier Ltd. The authors would like to thank the Spanish Science and Technology Ministry for their support through project DPI2002-02924 and Madrid
dc.description.abstractThe objective of this work is to develop several metaheuristic algorithms to improve the efficiency of the MILP algorithm used for planning transportation of multiple petroleum products in a multi-pipeline system. The problem involves planning the optimal sequence of products assigned to each new package pumped through each polyduct of the network in order to meet product demands at each destination node before the end of the planning horizon. All the proposed metaheuristics are combinations of improvement methods applied to solutions resulting from different construction heuristics. These improvements are performed by searching the neighborhoods generated around the current solution by different Global Search Metaheuristics: Multi-Start Search, Variable Neighborhood Search, Taboo Search and Simulated Annealing. Numerical examples are solved in order to show the performance of these metaheuristics against a standard commercial solver using MILP. Results demonstrate how these metaheuristics are able to reach better solutions in much lower computational time. (C) 2011 Elsevier Ltd. All rights reserved.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Science and Technology Ministry
dc.description.sponsorshipMadrid Autonomous Community
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22211
dc.identifier.doi10.1016/j.compchemeng.2011.10.003
dc.identifier.issn0098-1354
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.compchemeng.2011.10.003
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43914
dc.journal.titleComputers & Chemical Engineering
dc.language.isoeng
dc.page.final261
dc.page.initial248
dc.publisherPergamon-Elsevier Science LTD
dc.relation.projectIDDPI2002-02924
dc.relation.projectIDS-0505/DPI/0391
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordSupply Chain Networks
dc.subject.keywordMultiobjetive Optimitation
dc.subject.keywordModel
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleGlobal search metaheuristics for planning transportation of multiple petroleum products in a multi-pipeline system
dc.typejournal article
dc.volume.number37
dcterms.referencesAlba, E. & Troya, J. M. (2000). Influence of the migration policy in parallel distributed GAs with structured and panmictic populations. Applied Intelligence,12, 163–181. Aarts, E. & Lenstra, J. K. (2003). Local Search in combinatorial optimization. Princeton University Press. Altiparmak, F., Gen, M., Lin, L. & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers and Chemical Engineering, 51, 196–215. Azencott, R. (1992). Sequential simulated annealing: speed of convergence and acceleration techniques. In R. Azencott (Ed.), Simulated annealing: Parallelization techniques (pp. 1–9). New York: John Wiley and Sons. Bazaraa, M. S., Jarvis, J. J. & Sherali, H. D. (1990). Linear programming and network flows. New York: Wiley., 394–418 Cafaro, D. C. & Cerdá, J. (2004). Optimal scheduling of multiproduct pipeline systems using a nondiscrete MILP formulation. Computers and Chemical Engineering, 28, 2053–2068. Cafaro, D. C. & Cerdá, J. (2008). Dynamic scheduling of multiproduct pipelines with multiple delivery due dates. Computers and Chemical Engineering, 32, 728–753. Chen, C.-L. & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers and Chemical Engineering, 28, 1131–1144. Cruz, J. M., Andrés, B., Herrán, A., Besada, E. & Fernández, P. (2003). Multiobjective optimization of the transport in oil pipelines networks. In 9th IEEE international conference on emerging technologies and factory automation (Vol. 1) (pp.566–573). Cruz, J. M., Risco, J. L., Herrán, A. & Fernández, P. (2004). Hybrid heuristic and mathematical programming in oil pipelines networks. In Congress on evolutionary computation. CEC2004 (Vol. 1) Portland Marriot Downtown, Portland, USA, (pp. 1479–1486). Cruz, J. M., Herrán, A., Risco, J. L. & Andrés, B. (2005). Hybrid heuristic and mathematical programming in oil pipelines networks: Use of immigrants. Journal of Zhejiang University Science, 6A(1), 9–19. Defersha, F. M. & Chen, M. (2008). A parallel multiple Markov chain simulated annealing for multi-period manufacturing cell formation problems. International Journal of Advanced Manufacturing Technology, 37(1–2), 140–156. Drexl, A. (1997). Lot sizing and scheduling – Survey and extensions. European Journal of Operations Research, 99, 221–235. Glover, F. & Laguna, M. (1997). Tabu search. Kluwer. Hansen, P. & Mladenovic, N. (1999). An introduction to variable neighborhood search. In S. Voss, S. Voss, et al. (Eds.), Metaheuristics: Advances and trends in local search paradigms for optimization (pp. 433–458). Kluwer. Herrán, A., de la Cruz, J. M. & de Andrés, B. (2010). A mathematical model for planning transportation of multiple petroleum products in a multi pipeline system. Computers and Chemical Engineering, 34, 401–413. ILOG Inc. (2006). ILOG OPL Studio 4.2 users manual. 1080 Linda Vista Ave. Mountain View, CA 94043. http://www.ilog.com. Janak, S. L., Lin, X. & Floudas, C. A. (2007). A new robust optimization approach for scheduling under uncertainty: II. Uncertainty with known probability distribution. Computers and Chemical Engineering, 31, 171–195. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680. Lee, S.-Y. & Lee, K. G. (1996). Synchronous and asynchronous parallel simulated annealing with multiple markov chains. IEEE Transactions on Parallel and Distributed Systems, 7, 903–1007. Lengauer, T. (1990). Combinatorial algorithms for integrated circuit layout. John Wiley and Sons. (pp. 427–446) Luo, C. & Rong, G. (2007). Hierarchical approach for short-term scheduling in refineries. Industrial and Engineering Chemical Research, 46, 3656–3668. Martí, R. (2003). Multistart methods. In F. Glover, A. Gary, & Kochenberger (Eds.), Handbook of metaheuristics (pp. 355–368). Kluwer Academic. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092. Milidiú, R. L., Pessoa, A. & Laber, E. (2003). The complexity of makespan minimization for pipeline transportation. Theoretical Computer Science, 306, 339–351. Mirhassani, S. A. & Ghorbanalizadeh, M. (2008). The multiproduct pipeline scheduling system. Computers and Mathematics with Applications, 56(4), 891–897. Pereira, A., Carvalho, F., Pedroso, J. & Constantino, M. (2003). Iterated local search and Tabu search for a discrete lot sizing and scheduling problem. In METAHEURISTICS: Computer decision-making (combinatorial optimization book series). The Netherlands: Kluwer Academic Publishers. Rejowski, R., Jr. & Pinto, J. M. (2003). Scheduling of a multiproduct pipeline system. Computers and Chemical Engineering, 27, 1229–1246. Rejowski, R., Jr. & Pinto, J. M. (2004). Efficient MILP formulations and valid cuts for multiproduct pipeline scheduling. Computers and Chemical Engineering, 27,1511–1528. Rejowski, R., Jr. & Pinto, J. M. (2008). A novel continuous time representation for the scheduling of pipeline systems with pumping yield rate constraints. Computers and Chemical Engineering, 32, 1042–1066. Relvas, S., Barbosa-Póvoa, A. P. F. D. & Matos, H. A. (2010). Heuristic batch sequencing on a multiproduct oil distribution system. Computers and Chemical Engineering,33, 712–730. Sasikumar, M., Prakash, P. R., Patil, S. M. & Ramani, S. (1997). PIPES: A heuristic search model for pipeline schedule generation. Knowledge-Based Systems, 10, 169–175. Schrijver, A. (1986). Theory of linear and integer programming. Chichester: Wiley. Yagiura, M. & Ibaraki, T. (2002). Local search. In P. M. Pardalos, & M. G. C. Resende (Eds.), Handbook of applied optimization (pp. 104–123). Oxford University Press
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cruzgarcia03.pdf
Size:
988.23 KB
Format:
Adobe Portable Document Format

Collections