Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nanowires and stacks of nanoplates of Mn doped ZnO synthesized by thermal evaporation-deposition

dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorFernández Sánchez, Paloma
dc.contributor.authorUrbieta Quiroga, Ana Irene
dc.date.accessioned2023-06-20T03:36:28Z
dc.date.available2023-06-20T03:36:28Z
dc.date.issued2012-02-15
dc.description©2012 Elsevier B.V. This work was supported by MICINN (Projects MAT 2009-07882 and CSD 2009-00013).
dc.description.abstractMn doped ZnO nano- and microstructures have grown by a catalyst free evaporation-deposition method. Different morphologies such as nanowires, nanorods and stacks of nanoplates with a skewer arrangement around a central rod, have been obtained. Structural and cathodoluminescence investigations show the incorporation of Mn into the structures and the formation of a spinel phase in some areas. The influence of dopant distribution and local growth conditions on the formation of these structures, in particular of the stacks of nanoplates, has been also investigated.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN (Ministerio de Ciencia e Innovación, España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23633
dc.identifier.doi10.1016/j.matchemphys.2011.12.084
dc.identifier.issn0254-0584
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.matchemphys.2011.12.084
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44027
dc.issue.number2-3
dc.journal.titleMaterials Chemistry and Physics
dc.language.isoeng
dc.page.final1124
dc.page.initial1119
dc.publisherElsevier Science SA
dc.relation.projectIDMAT2009-07882
dc.relation.projectIDCSD 2009-00013
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordMagnetic-Properties
dc.subject.keywordThin-Films
dc.subject.keywordLuminescence
dc.subject.keywordGrowth
dc.subject.keywordCathodoluminescence
dc.subject.keywordPhotoluminescence
dc.subject.keywordZn1-Xmnxo
dc.subject.keywordManganese
dc.subject.keywordCeramics
dc.subject.keywordNanorods
dc.subject.ucmFísica de materiales
dc.titleNanowires and stacks of nanoplates of Mn doped ZnO synthesized by thermal evaporation-deposition
dc.typejournal article
dc.volume.number132
dcterms.references[1] Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, D.P. Yu, Appl. Phys. Lett. 83 (2003) 4020–4022. [2] J.J. Liu, M.H. Yu, W.L. Zhou, Appl. Phys. Lett. 87 (2005) 172505. [3] H.L. Yan, X.L. Zhong, J.B. Wang, G.H. Huang, S.L. Ding, G.C. Zhou, Y.C. Zhou, Appl. Phys. Lett. 90 (2007) 082503. [4] H.L. Yan, J.B. Wang, X.L. Zhong, Y.C. Zhou, Appl. Phys. Lett. 93 (2008) 142502. [5] H.L. Yan, J.B. Wang, X.L. Zhong, Appl. Surf. Sci. 257 (2011) 5017–5020. [6] Y. Guo, X. Cao, X. Lan, C. Zhao, X. Xue, Y. Song, J. Phys. Chem. C 112 (2008) 8832–8838. [7] X.T. Zhang, Y.C. Liu, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, X.G. Kong, J. Cryst. Growth 254 (2003) 80–85. [8] A. Urbieta, P. Fernández, J. Piqueras, J. Nano. Res. 4 (2008) 27–32. [9] P. Gao, Z.L. Wang, J. Phys. Chem. B 106 (2002) 12653–12658. [10] J.G. Wen, J.Y. Lao, D.Z. Wang, T.M. Kyaw, Y.L. Foo, Z.F. Ren, Chem. Phys. Lett. 372 (2003) 717–722. [11] Y. Ortega, P. Fernández, J. Piqueras, Nanotechnology 18 (2007) 115606. [12] Y. Ortega, P. Fernández, J. Piqueras, J. Cryst. Growth 311 (2009) 3231–3234. [13] J.Y. Lao, J.G. Wen, Z.F. Ren, Nanoletters 2 (2002) 1287–1291. [14] Y. Ortega, P. Fernández, J. Piqueras, J. Nanosci. Nanotechnol. 10 (2010) 502–507. [15] J. Grym, P. Fernández, J. Piqueras, Nanotechnology 16 (2005) 931–935. [16] S. Karamat, S. Mahmood, J.J. Lin, Z.Y. Pan, P. Lee, T.L. Tan, S.V. Springham, R.V. Ramanujan, R.S. Rawat, Appl. Surf. Sci. 254 (2008) 7285–7289. [17] M. Liu M., A.H. Kitai, P. Mascher, J. Lumin. 54 (1992) 35–42. [18] H.W. Zhang, E.W. Shi, Z.Z. Chen, X.C. Liu, B. Xiao, L.X. Song, J. Magn. Magn. Mater. 305 (2006) 377–380. [19] A. Urbieta, P. Fernández, J. Piqueras, Ch. Hardalov, T. Sekiguchi, J. Phys. D 34 (2001) 2945–2949. [20] T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys. 43 (2004) 2602–2606. [21] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68 (1996) 403–405. [22] J.A. García, A. Remón, J. Piqueras, J. Appl. Phys. 62 (1987) 3058–3059. [23] P. Fernández, A. Remón, J.A. García, J. Llopis, J. Piqueras, Appl. Phys. A 46 (1988) 1–3.
dspace.entity.typePublication
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublicationdaf4b879-c4a8-4121-aaff-e6ba47195545
relation.isAuthorOfPublicationf8df9b48-67a9-4518-9c37-a6bd1b37c150
relation.isAuthorOfPublication.latestForDiscoverydaf4b879-c4a8-4121-aaff-e6ba47195545

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ21.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format

Collections