Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum algorithms for classical lattice models

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Citations
Google Scholar

Citation

Abstract

We give efficient quantum algorithms to estimate the partition function of (i) the six-vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi-2D square lattice and (iv) the Z2 lattice gauge theory on a 3D square lattice. Moreover, we prove that these problems are BQP-complete, that is, that estimating these partition functions is as hard as simulating arbitrary quantum computation. The results are proven for a complex parameter regime of the models. The proofs are based on a mapping relating partition functions to quantum circuits introduced by Van den Nest et al (2009 Phys. Rev. A 80 052334) and extended here.

Research Projects

Organizational Units

Journal Issue

Description

© IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We thank H J Briegel and J I Cirac for helpful discussions. This work was supported by the FWF and the European Union (QICS, SCALA, NAMEQUAM). MVDN acknowledges support from the excellence cluster MAP. MAMD acknowledges support from the Spanish MICINN grant FIS2009-10061, CAM research consortium QUITEMAD S2009-ESP-1594, European FET-7 grant PICC and UCM-BS grant GICC-910758.

Unesco subjects

Keywords

Collections