Magnetic transitions in alpha-Fe_2O_3 nanowires
Loading...
Download
Official URL
Full text at PDC
Publication date
2009
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citation
Abstract
Magnetic transitions in single-crystal alpha-F_2O_3 (hematite) nanowires, grown by thermal oxidation of iron powder, have been studied in the range of 5-1023 K with a superconducting quantum interference device below room temperature and with a vibrating sample magnetometer at higher temperatures. The broad temperature range covered enables us to compare magnetic transitions in the nanowires with the transitions reported for bulk hematite. Morin temperatures (T-M) of the nanowires and of hematite bulk reference powder were found to be 123 and 263 K, respectively. Also the Neel temperature (T-N) of the nanowires, 852 K, was lower than the bulk T-N value. Measurements of the magnetization as a function of temperature show an enhanced signal in the nanowires, which suggests a decrease in the anti ferromagnetic coupling. A coercive field observed below T-M in the hysteresis loops of the nanowires is tentatively explained by the presence of a magnetic phase.
Description
©) 2009 American Institute of Physics.
This work has been supported by MEC through project Nos. MAT2006-01259 and MAT2007-65965-C02-02. High temperature VSM measurements have been carried out at CT-ISOM funded by the Spanish “Ministerio de Ciencia e Innovación.”