Carbon-Based Enzyme Mimetics for Electrochemical Biosensing
dc.contributor.author | Sánchez Tirado, Esther | |
dc.contributor.author | Yáñez-Sedeño Orive, Paloma | |
dc.contributor.author | Pingarrón Carrazón, José Manuel | |
dc.date.accessioned | 2024-05-30T14:59:52Z | |
dc.date.available | 2024-05-30T14:59:52Z | |
dc.date.issued | 2023-09-07 | |
dc.description | 2023 Acuerdos transformativos CRUE | |
dc.description.abstract | Natural enzymes are used as special reagents for the preparation of electrochemical (bio)sensors due to their ability to catalyze processes, improving the selectivity of detection. However, some drawbacks, such as denaturation in harsh experimental conditions and their rapid de- gradation, as well as the high cost and difficulties in recycling them, restrict their practical applications. Nowadays, the use of artificial enzymes, mostly based on nanomaterials, mimicking the functions of natural products, has been growing. These so-called nanozymes present several advantages over natural enzymes, such as enhanced stability, low cost, easy production, and rapid activity. These outstanding features are responsible for their widespread use in areas such as catalysis, energy, imaging, sensing, or biomedicine. These materials can be divided into two main groups: metal and carbon-based nanozymes. The latter provides additional advantages compared to metal nanozymes, i.e., stable and tuneable activity and good biocompatibility, mimicking enzyme activities such as those of peroxidase, catalase, oxidase, superoxide dismutase, nuclease, or phosphatase. In this review article, we have focused on the use of carbon-based nanozymes for the preparation of electrochemical (bio)sensors. The main features of the most recent applications have been revised and illustrated with examples selected from the literature over the last four years (since 2020). | |
dc.description.department | Depto. de Química Analítica | |
dc.description.faculty | Fac. de Ciencias Químicas | |
dc.description.fundingtype | APC financiada por la UCM | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.doi | 10.3390/mi14091746 | |
dc.identifier.officialurl | https://www.mdpi.com/2072-666X/14/9/1746 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/104606 | |
dc.issue.number | 9 | |
dc.journal.title | Micromachines | |
dc.language.iso | eng | |
dc.page.final | 18 | |
dc.page.initial | 1 | |
dc.publisher | MDPI | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.keyword | Carbon nanozyme | |
dc.subject.keyword | Artificial enzyme | |
dc.subject.keyword | Enzyme mimicking | |
dc.subject.keyword | Electrochemical biosensor | |
dc.subject.ucm | Química | |
dc.subject.unesco | 23 Química | |
dc.title | Carbon-Based Enzyme Mimetics for Electrochemical Biosensing | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 14 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8ce0e95b-049c-4147-be76-110e258443a1 | |
relation.isAuthorOfPublication | 06ab2fa0-2b2d-4b58-80ed-82f9cc767175 | |
relation.isAuthorOfPublication | 8808f99c-5f56-4562-839a-517626c76dad | |
relation.isAuthorOfPublication.latestForDiscovery | 8ce0e95b-049c-4147-be76-110e258443a1 |
Download
Original bundle
1 - 1 of 1