Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Positioning a focused Gaussian beam inside a refractive cylinder

dc.contributor.authorBernabeu Martínez, Eusebio
dc.contributor.authorSalgado Remacha, Francisco Javier
dc.contributor.authorSánchez Martín, José Antonio
dc.date.accessioned2023-06-19T13:24:42Z
dc.date.available2023-06-19T13:24:42Z
dc.date.issued2014-04
dc.description© 2013 Elsevier Ltd. This work has been partially supported by the IPT-020000-2010-9 INNPACTO FORE Project of the Ministry of Science and Innovation of Spain. The authors also thank the comments and language editing of Dr. Jesús Martínez del Rincón, Prof. Dr. Agustín González-Cano, Elizabeth R Wright and Stephanie Smith.
dc.description.abstractWe present in this work a study of the diffraction of a focused Gaussian beam by a microrefractive cylinder, and the dependence of the far field diffracted pattern with the location of the beam focal plane, relative to the center of the cylinder. A numerical study of the problem is carried out and validated with experimental verification. We center our attention on two parameters: the divergence and the number of peaks of the diffracted field. Both present a minimum for a particular position of the focal plane inside the refractive cylinder. This analysis can be used as a novel control technique for ablation of optical fibers and it can also be used as a criterion for the proper location of a focused laser beam inside an optical fiber with high accuracy. This criterion, based on the distribution of the far-field diffracted pattern, can be automated or used as a visual clue for a human operator.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25992
dc.identifier.doi10.1016/j.optlaseng.2013.10.020
dc.identifier.issn0143-8166
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.optlaseng.2013.10.020
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33590
dc.journal.titleOptics and Lassers in Engineering
dc.language.isoeng
dc.page.final58
dc.page.initial53
dc.publisherElsevier Sci. Ltd.
dc.relation.projectIDPT-020000-2010-9 INNPACTO FORE
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPhotonic-Nanojets
dc.subject.keywordPropagation Method
dc.subject.keywordInfinite Cylinder
dc.subject.keywordScattering
dc.subject.keywordOptics
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titlePositioning a focused Gaussian beam inside a refractive cylinder
dc.typejournal article
dc.volume.number55
dcterms.references[1] M. Born, E. Wolf.Principles of optics.(3rd. ed)Pergamon Press Ltd, Oxford, England (1965) (Section 13.5) [2] J. Casas.Óptica.(7a ed)Universidad de Zaragoza, Spain (1994) [3] H.C. van de Hulst.Light scattering by small particles.John Wiley & Sons, New York, USA (1957) [4] R. Winston, J.C. Miñano, P.G. Benítez.Nonimaging optics.Elsevier-Academic Press, New York, USA (2004) [5] L. Mees, K.F. Ren, G. Gréhan, G. Gouesbet.Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results.Appl Opt, 38 (1999), pp. 1867–1876 [6] L. Lorenz.Lysbevaegelsen i og uden for en haf plane lysbölger belyst Kulge.Vidensk Selk Skr, 6 (1890), pp. 1–[7] L. Lorenz, "Sur la lumière rèflèchie et rèfracèe par une sphère transparente," in Oeuvres Scientifiques de L. Lorenz, revues et annotèes par H. Valentiner (Librairie Lehmann et Stage, Copenhagen, 1898), pp. 405–529 [8] G. Mie.Beiträge zur Optik Trüber Medien, speziell Kolloidaler Meallösingen.Ann Phys, 25 (1908), pp. 377–452 [9] P. Debye.Der Lichtdruck auf Kugeln von Beliebigen Material.Ann Phys, 30 (1909), pp. 57–136 [10] J.P. Barton.Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam.J Opt Soc Am A, 16 (1999), pp. 160–166 [11] L. Xu, J. Ding, A.Y.S. Cheng.Scattering matrix of infrared radiation by ice finite circular cylinders.Appl Opt, 41 (2002), pp. 2333–2348 [12] C. Rockstuhl, H.P. Herzig.Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders.J Opt A: Pure Appl Opt, 6 (2004), pp. 924–931 [13] W. Doyle St. John.Determination of the beam centroid of an obstructed focused Gaussian laser beam.Appl Opt, 48 (2009), pp. 4501–4505 [14] G. Gouesbet, B. Maheu, G. Gréhan.Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation.J Opt Soc Am A, 5 (1988), pp. 1427–1443 [15] Y. Nishiyama, S. Kurita, I. Yamamoto, Y. Ishizuka, T. Watanabe, D. Kobayashi et al..Diameter and refractive index of a cylindrical thread determined by scattered light pattern.Opt Rev, 8 (2001), pp. 90–94 [16] F. Xu, K.F. Ren, X. Cai, J. Shen.Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spherical particle with end-on incidence.Appl Opt, 45 (2006), pp. 5000–5009 [17] A.V. Itagi, W.A. Challener.Optics of photonic nanojets.J Opt Soc Am A, 22 (2005), pp. 2847–2858 [18] S. Lecler, Y. Takakura, P. Meyrueis.Properties of a three-dimensional photonic jet.Opt Lett, 30 (2005), pp. 2641–2643 [19] A. Heifetz, S.-C. Kong, A.V. Sahakian, A. Taflove, V. Backman.Photonic nanojets.J Comput Theor Nanosci, 6 (2009), pp. 1979–1992 [20] Y.E. Geints, E.K. Panina, A.A. Zemlyanov.Control over parameters of photonic nanojets of dielectric microspheres.Opt Commun, 283 (2010), pp. 4775–4781 [21] J. Coelho, M. Nespereira, C. Silva, J. Rebordao.LOLS research in technology for the development and application of new fiber-based sensors.Sensors—Basel, 12 (2012), pp. 2654–2666 [22] Salgado-Remacha FJ, Sánchez-Martín JA, Bernabeu E, Procesado láser de fibras ópticas para el desarrollo de sensores de campo evanescente. Presented at the 2012 X Reunión Nacional de Óptica. Zaragoza, Spain; 2012. [23] L.W. Casperson, C. Yeh.Rayleigh–Debye scattering with focused laser beams.Appl Opt, 17 (1978), pp. 1637–1643 [24] E. Zimmermann, R. Dändliker, N. Souli.Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach.J Opt Soc Am A, 12 (1995), pp. 398–403 [25] J.A. Lock.Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,.J Opt Soc Am A, 14 (1997), pp. 640–652 [26] P.J.M. Vanbrabant, J. Beeckman, K. Nayts, R. James, F.A. Fernandez.A finite element beam propagation method for simulation of liquid crystal devices.Opt Express, 17 (2009), pp. 10895–10909 [27] F.J. Salgado-Remacha, L.M. Sanchez-Brea, E. Bernabeu.Effect of fill-factor on the Talbot effect of diffraction gratings.J Eur Opt Soc—Rapid, 6 (2011), p. 11055 [28] M. Koshiba, Y. Tsuji, M. Hikari.Finite element beam propagation method with perfectly matched layer boundary condition.IEEE Trans Magn, 35 (1999), pp. 1482–1485 [29] L. Sirleto, M. Iodice, G.G. Della Corte, I. Rendina.Digital optical switch based on amorphous silicon waveguide.Opt Laser Eng, 45 (2007), pp. 458–462 [30] J. Alda, "Laser and Gaussian Beam Propagation and Transformation," in (Editor: Marcel Dekker) Encyclopedia of Optical Engineering ( Marcel Dekker, New York, USA, 2003), pp 999-1013. [31].〈http://www.corning.com/WorkArea/showcontent.aspx?id=41243〉 [32] J.D. Schmidt.Numerical simulation of optical wave propagation with examples in Matlab.SPIE Press, Washington, USA (2010) (Chapter 2). [33] M.J. Berg, C.M. Sorensen, A. Chakrabarti.Explanation of the patterns in Mie theory.J Quant Spectrosc Radiat Trans, 111 (2010), pp. 782–794.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bernabeu,E01.pdf
Size:
2.46 MB
Format:
Adobe Portable Document Format

Collections