Integrable deformations of algebraic curves
dc.contributor.author | Kodama, Y. | |
dc.contributor.author | Konopelchenko, Boris | |
dc.contributor.author | Martínez Alonso, Luis | |
dc.date.accessioned | 2023-06-20T11:03:11Z | |
dc.date.available | 2023-06-20T11:03:11Z | |
dc.date.issued | 2005-07 | |
dc.description | ©2005 Springer Science+Business Media, Inc. One of the authors (L. M. A.) thanks the members of the Physics Department of Lecce University for their warm hospitality. This work was supported in part by the DGCYT (Project No. BFM2002-01607), COFIN (Grant 2002 “Sintesi”), and the National Science Foundation (Grant No. DMS-0404931). | |
dc.description.abstract | We present a general scheme for determining and studying integrable deformations of algebraic curves, based on the use of Lenard relations. We emphasize the use of several types of dynamical variables: branches, power sums, and potentials. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGCYT | |
dc.description.sponsorship | COFIN | |
dc.description.sponsorship | National Science Foundation | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/34327 | |
dc.identifier.doi | 10.1007/s11232-005-0123-9 | |
dc.identifier.issn | 0040-5779 | |
dc.identifier.officialurl | http://dx.doi.org/10.1007/s11232-005-0123-9 | |
dc.identifier.relatedurl | http://link.springer.com | |
dc.identifier.relatedurl | http://arxiv.org/abs/nlin/0409063 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51649 | |
dc.issue.number | 1 | |
dc.journal.title | Theoretical and mathematical physics | |
dc.language.iso | eng | |
dc.page.final | 967 | |
dc.page.initial | 961 | |
dc.publisher | Springer | |
dc.relation.projectID | BFM2002-01607 | |
dc.relation.projectID | Grant 2002 “Sintesi” | |
dc.relation.projectID | DMS-0404931 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Algebraic curves | |
dc.subject.keyword | Integrable systems | |
dc.subject.keyword | Lenard relations | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Integrable deformations of algebraic curves | |
dc.type | journal article | |
dc.volume.number | 144 | |
dcterms.references | 1. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov, Plenum, New York (1984); E. D. Belokolos, A. I. Bobenko, V. Z. Enol´ski, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin (1994); B. A. Dubrovin and S. P. Novikov, Russ. Math. Surveys, 44, No. 6, 35 (1989); H. Flaschka, M. G. Forest, and D. W. Mclauglin, Comm. Pure Appl. Math., 33, 739 (1980); B. A. Dubrovin, Comm. Math. Phys., 145, 415 (1992). 2. I. M. Krichever, Funct. Anal. Appl., 22, 200 (1988); Comm. Pure Appl. Math., 47, 437 (1994). 3. Y. Kodama and B. G. Konopelchenko, J. Phys. A, 35, L489-L500 (2002); “Deformations of plane algebraic curves and integrable systems of hydrodynamic type,” in: Nonlinear Physics: Theory and Experiment II (Proc. Intl. Workshop, Gallipoli, Lecce, Italy, 2002, M. J. Ablowitz, M. Boiti, F. Pempinelli, and B. Prinari, eds.), World Scientific, River Edge, N. J. (2003), p. 234. 4. B. G. Konopelchenko and L. Mart´ınez Alonso, J. Phys. A, 37, 7859 (2004). 5. C. L. Siegel, Topics in Complex Function Theory, Vol. 1, Elliptic Functions and Uniformization Theory, Wiley, New York (1969). 6. R. Y. Walker, Algebraic Curves, Springer, Berlin (1978). 7. S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers (Math. Surveys and Monographs, Vol. 35), Amer. Math. Soc., Providence, R. I. (1990). 8. B. L. van der Waerden, Algebra, Vol. 1, Springer, Berlin (1991). 9. L. Redei, Introduction to Algebra, Vol. 1, Pergamon, Oxford (1967). 10. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon, Oxford (1979). 11. L. Schwartz, Analyse mathématique, Vol. 2, Hermann, Paris (1967) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 896aafc0-9740-4609-bc38-829f249a0d2b | |
relation.isAuthorOfPublication.latestForDiscovery | 896aafc0-9740-4609-bc38-829f249a0d2b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- martinezalonso25preprint.pdf
- Size:
- 121.72 KB
- Format:
- Adobe Portable Document Format