FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency

dc.contributor.authorSusi, Gianluca
dc.contributor.authorGarcés, Pilar
dc.contributor.authorParacone, Emanuele
dc.contributor.authorCristini, Alessandro
dc.contributor.authorSalerno, Mario
dc.contributor.authorMaestu Unturbe, Fernando
dc.contributor.authorPereda, Ernesto
dc.date.accessioned2025-01-28T15:59:44Z
dc.date.available2025-01-28T15:59:44Z
dc.date.issued2021-06-09
dc.description.abstractNeural modelling tools are increasingly employed to describe, explain, and predict the human brain's behavior. Among them, spiking neural networks (SNNs) make possible the simulation of neural activity at the level of single neurons, but their use is often threatened by the resources needed in terms of processing capabilities and memory. Emerging applications where a low energy burden is required (e.g. implanted neuroprostheses) motivate the exploration of new strategies able to capture the relevant principles of neuronal dynamics in reduced and efficient models. The recent Leaky Integrate-and-Fire with Latency (LIFL) spiking neuron model shows some realistic neuronal features and efficiency at the same time, a combination of characteristics that may result appealing for SNN-based brain modelling. In this paper we introduce FNS, the first LIFL-based SNN framework, which combines spiking/synaptic modelling with the event-driven approach, allowing us to define heterogeneous neuron groups and multi-scale connectivity, with delayed connections and plastic synapses. FNS allows multi-thread, precise simulations, integrating a novel parallelization strategy and a mechanism of periodic dumping. We evaluate the performance of FNS in terms of simulation time and used memory, and compare it with those obtained with neuronal models having a similar neurocomputational profile, implemented in NEST, showing that FNS performs better in both scenarios. FNS can be advantageously used to explore the interaction within and between populations of spiking neurons, even for long time-scales and with a limited hardware configuration.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.statuspub
dc.identifier.citationSusi, G., Garcés, P., Paracone, E. et al. FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency. Sci Rep 11, 12160 (2021). https://doi.org/10.1038/s41598-021-91513-8
dc.identifier.doi10.1038/s41598-021-91513-8
dc.identifier.essn2045-2322
dc.identifier.officialurlhttps://dx.doi.org/10.1038/s41598-021-91513-8
dc.identifier.pmid34108523
dc.identifier.relatedurlhttps://www.nature.com/articles/s41598-021-91513-8
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116673
dc.issue.number1
dc.journal.titleScientific Reports
dc.language.isoeng
dc.page.final17
dc.page.initial1
dc.publisherNature Research
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/826421/EU
dc.relation.projectIDnfo:eu-repo/grantAgreement/MINECO%AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2016-80063-C3-2-R
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111537GB-C22/ES/COMPUTACION BASADA EN DENDRITAS APLICADA A SISTEMAS FOTONICOS/
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu53
dc.subject.cdu612.8
dc.subject.cdu519.87:004
dc.subject.keywordNeural simulation
dc.subject.keywordSpiking neural networks
dc.subject.keywordMagnetoencephalography
dc.subject.keywordEvent-driven
dc.subject.ucmNeurociencias (Biológicas)
dc.subject.ucmCiencias Biomédicas
dc.subject.ucmFísica (Física)
dc.subject.unesco1203.26 Simulación
dc.subject.unesco22 Física
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricas
dc.subject.unesco2490 Neurociencias
dc.titleFNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7
relation.isAuthorOfPublicationafa98131-b2fe-40fd-8f89-f3994d80ab72
relation.isAuthorOfPublication.latestForDiscovery20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-021-91513-8.pdf
Size:
4.62 MB
Format:
Adobe Portable Document Format

Collections