Crossed-beam experiment for the scattering of low- and intermediate-energy electrons from BF3: A comparative study with XF3 (X = C, N, and CH) molecules

dc.contributor.authorHoshino, M.
dc.contributor.authorLimao Vieira, P.
dc.contributor.authorSuga, A.
dc.contributor.authorKato, H.
dc.contributor.authorFerreira da Silva, F.
dc.contributor.authorBlanco Ramos, Francisco
dc.contributor.authorGarcia, G.
dc.contributor.authorTanaka, H.
dc.date.accessioned2023-06-18T06:46:42Z
dc.date.available2023-06-18T06:46:42Z
dc.date.issued2015-07-14
dc.description©2015 AIP Publishing LLC. This work was conducted under the support of the Japanese Ministry of Education, Sport, Culture, and Technology. F.F.S. acknowledges the Portuguese Foundation for Science and Technology (FCT-MEC) for post-doctoral No. SFRH/BPD/68979/2010 grant, and together with PL-V the Nos. UID/FIS/00068/2013 and PTDC/FIS-ATO/1832/2012 grants through FCT-MEC. PL-V also acknowledges his Visiting Professor position at Sophia University, Tokyo, Japan. F.B. and G.G. acknowledge the partial financial support from the Spanish Ministerio de Economia y Competitivided (Project No. FIS 2012-31230).
dc.description.abstractAbsolute differential cross sections (DCSs) for electron interaction with BF3 molecules have been measured in the impact energy range of 1.5-200 eV and recorded over a scattering angle range of 15 degrees-150 degrees. These angular distributions have been normalized by reference to the elastic DCSs of the He atom and integrated by employing a modified phase shift analysis procedure to generate integral cross sections (ICSs) and momentum transfer cross sections (MTCSs). The calculations of DCSs and ICSs have been carried out using an independent atom model under the screening corrected additivity rule (IAM-SCAR). The present elastic DCSs have been found to agree well with the results of IAM-SCAR calculation above 20 eV, and also with a recent Schwinger multichannel calculation below 30 eV. Furthermore, in the comparison with the XF3 (X = B, C, N, and CH) molecules, the elastic DCSs reveal a similar angular distribution which are approximately equal in magnitude from 30 to 200 eV. This feature suggests that the elastic scattering is dominated virtually by the 3-outer fluorine atoms surrounding the XF3 molecules. The vibrational DCSs have also been obtained in the energy range of 1.5-15 eV and vibrational analysis based on the angular correlation theory has been carried out to explain the nature of the shape resonances. Limited experiments on vibrational inelastic scattering confirmed the existence of a shape resonance with a peak at 3.8 eV, which is also observed in the vibrational ICS. Finally, the estimated elastic ICSs, MTCSs, as well as total cross sections are compared with the previous cross section data available. (C) 2015 AIP Publishing LLC.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipMinistry of Education, Sport, Culture, and Technology, Japan
dc.description.sponsorshipFoundation for Science and Technology, Portugal
dc.description.sponsorshipFCT-MEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33091
dc.identifier.citation1 P. X. Hien, B.-H. Jeon, and D. A. Tuan, J. Phys. Soc. Jpn. 82, 034301 (2013). 2 V. D. Stojanovic, Z. M. Raspopovic, J. V. Jovanovic, S. B. Radovanov, Z. D. Nikitovic, and Z. Lj. Petrovic, Nucl. Instrum. Methods Phys. Res., Sect. B 279, 151 (2012). 3 M. V. Kurepa, V. M. Pejcev, and I. M. Cadez, J. Phys. D 9, 481 (1976). 4 Y.-K. Kim and K. K. Irikura, AIP Conf. Proc. 543, 220 (2000). 5 K. A. MacNeil and J. C. J. Thynne, J. Phys. Chem. 74, 2257 (1970). 6 J. J. DeCorpo and J. L. Frankline, J. Chem. Phys. 54, 1885 (1971). 7 J. A. Stockdale, D. R. Nelson, F. J. Davis, and R. N. Compton, J. Chem. Phys. 56, 3336 (1972). 8 P. W. Harland and J. L. Frankline, J. Chem. Phys. 61, 1621 (1974). 9 C. Szmytkowski, M. Piotrowicz, A. Domaracka, L. Klosowski, E. Ptasinska- Denga, and G. Kasperski, J. Chem. Phys. 121, 1790 (2004). 10 M. Vinodkumar, K. Korot, C. Limbachiya, and B. K. Antony, J. Phys. B: At., Mol. Opt. Phys. 41, 245202 (2008). 11 M. Tronc, L. Malegat, R. Azria, and Y. LeCoat, J. Phys. B: At., Mol. Opt. Phys. 15, L253 (1982). 12 J. A. Tossell, J. H. Moore, and J. K. Olthoff, Int. J. Quantum Chem. 29, 1117 (1986). 13 M. Radmilović-Radjenović, H. N. Varambhia, M. Vranić, J. Tennyson, and Z. Lj. Petrović, Publ. Astron. Obs. Belgrade 84, 57 (2008). 14 R. F. da. Costa, L. G. Ferreira, M. A. P. Lima, and M. H. F. Bettega, J. Chem. Phys. 118, 75 (2003). 15 D. F. Pastega, R. F. Da Costa, M. A. P. Lima, and M. H. F. Bettega, Eur. Phys. J. D 68, 20 (2014). 16 L. Boesten, Y. Tachibana, Y. Nakano, T. Shinohara, H. Tanaka, and M. A. Dillon, J. Phys. B: At., Mol. Opt. Phys. 29, 5475 (1996). 17 T. N. Rescigno, Phys. Rev. A 52, 329 (1995). 18 E. Joucoski and M. H. F. Bettega, J. Phys. B: At., Mol. Opt. Phys. 35, 783 (2002). 19 T. Marcio, N. Varella, C.Winstead, V. McKoy, M. Kitajima, and H. Tanaka, Phys. Rev. A 65, 022702 (2002). 20 J. R. Brunton, L. R. Hargreaves, S. J. Buckman, G. García, F. Blanco, O. Zatsarinny, K. Bartschat, and M. J. Brunger, Chem. Phys. Lett. 55, 568-569 (2013). 21 J. R. Brunton, L. R. Hargreave, T. M. Maddern, S. J. Buckman, G. Garcia, F. Blanco, O. Zatsarinny, K. Bartschat, D. B. Jones, G. B. da. Silva, and M. J. Brunger, J. Phys. B: At., Mol. Opt. Phys. 46, 245203 (2013). 22 F. Blanco and G. García, Phys. Lett. 360, 707 (2007). 23 F. Blanco, J. Rosado, A. Illana, and G. García, Phys. Lett. A 374, 4420 (2010). 24 H. Kato, T. Asahina, H. Masui, M. Hoshino, H. Tanaka, H. Cho, O. Ingolfsson, F. Blanco, G. Garcia, S. J. Buckman, and M. J. Brunger, J. Chem. Phys. 132, 074309 (2010). 25 P. Limão-Vieira, M. Horie, H. Kato, M. Hoshino, F. Blanco, G. García, S. J. Buckman, and H. Tanaka, J. Chem. Phys. 135, 234309 (2011). 26 H. Kato, A. Suga, M. Hoshino, F. Blanco, G. García, P. Limão-Vieira, M. J. Brunger, and H. Tanaka, J. Chem. Phys. 136, 134313 (2012). 2 7H. Kato, K. Anzai, T. Ishihara, M. Hoshino, F. Blanco, G. García, P. Limão- Vieira, M. J. Brunger, S. J. Buckman, and H. Tanaka, J. Phys. B: At., Mol. Opt. Phys. 45, 095204 (2012). 28 H. Murai, Y. Ishijima, T. Mitsumura, Y. Sakamoto, H. Kato, M. Hoshino, F. Blanco, G. García, P. Limão-Vieira, M. J. Brunger, S. J. Buckman, and H. Tanaka, J. Chem. Phys. 138, 054302 (2013). 29 M. Hoshino, P. Limão-Vieira, K. Anzai, H. Kato, H. Cho, D. Mogi, T. Tanioka, F. Ferreira da Silva, D. Almeida, F. Blanco, G. García, O. Ingólfsson, and H. Tanaka, J. Chem. Phys. 141, 124302 (2014). 30 H. Tanaka, L. Boesten, D. Matsunaga, and T. Kudo, J. Phys. B: At., Mol. Opt. Phys. 21, 1255 (1988). 31 H. Tanaka, T. Ishikawa, T. Masai, T. Sagara, L. Boesten, M. Takekawa, Y. Itikawa, and M. Kimura, Phys. Rev. A 57, 1798 (1998). 32 T. Shimanouchi, J. Phys. Chem. Ref. Data 6, 1010 (1977). 33 S. F. Wong and A. L. Dube, Phys. Rev. A 17, 570 (1978). 34 L. Boesten and H. Tanaka, At. Data Nucl. Data Tables 52, 25 (1992). 35 S. K. Srivastava, A. Chutian, and S. Trajmar, J. Chem. Phys. 63, 2659 (1975). 36 R. T. Brinkmann and S. Trajmar, Rev. Sci. Instrum. 14, 245 (1981). 37 S. Trajmar and D. F. Register, in Electron-Molecule Collisions, edited by I. Shimamura and K. Takayagi (Plenum, New York, 1984), pp. 427–493. 38 J. C. Nikel, P. W. Zetner, G. Shen, and S. Trajmar, J. Phys. E: Sci. Instrum. 22, 730 (1989). 39 F. Rugamas, D. Roundy, G. Mikaelian, G. Vitug, M. Rudner, J. Shih, D. Smith, J. Segura, and M. A. Khakoo, Meas. Sci. Technol. 11, 1750 (2000). 40 M. A. Dillon, L. Boesten, H. Tanaka, M. Kimura, and H. Sato, J. Phys. B: At., Mol. Opt. Phys. 27, 1209 (1994). 41 H. Tanaka, T. Okada, L. Boesten, T. Suzuki, T. Yamamoto, and M. Kudo, J. Phys. B: At., Mol. Opt. Phys. 15, 3305 (1982). 42 D. G. Thompson, J. Phys. B: At., Mol. Opt. Phys. 4, 468 (1971). 43 G. G. Raju, IEEE Trans. Dielectr. Electr. Insul. 16, 1199 (2009). 44 L. Boesten, H. Tanaka, A. Kobayashi, M. A. Dillon, and M. Kimura, J. Phys. B: At., Mol. Opt. Phys. 25, 1607 (1992). 45 R. B. Diniz, M. A. P. Lima, and F. J. da. Paixão, J. Phys. B: At., Mol. Opt. Phys. 32, L539 (1999). 46 I. Rozum and J. Tennyson, J. Phys. B: At., Mol. Opt. Phys. 37, 957 (2004). 47 L. Boesten and H. Tanaka, J. Phys. B: At., Mol. Opt. Phys. 24, 821 (1991). 48 H. Tanaka, L. Boesten, H. Sato, M. Kimura, M. A. Dillon, and D. Spence, J. Phys. B: At., Mol. Opt. Phys. 23, 577 (1990). 49 M. A. Dillon, L. Boesten, H. Tanaka, M. Kimura, and H. Sato, J. Phys. B: At., Mol. Opt. Phys. 26, 4075 (1993). 50 T. Takagi, L. Boesten, H. Tanaka, and M. A. Dillon, J. Phys. B: At., Mol. Opt. Phys. 27, 5389 (1994). 51 H. Cho, R. J. Gulley, K. W. Trantham, L. J. Uhlmann, C. J. Dedman, and S. J. Buckman, J. Phys. B: At., Mol. Opt. Phys. 33, 3531 (2000). 52 Y. Itikawa, Phys. Rev. A 3, 831 (1971). 53 F. H. Read, J. Phys. B: At., Mol. Opt. Phys. 1, 892 (1968). 54 D. Andrick and F. H. Read, J. Phys. B: At., Mol. Opt. Phys. 4, 389 (1971). 55 D. Duflot, M. Hoshino, P. Limao-Vieira, A. Suga, H. Kato, and H. Tanaka, J. Phys. Chem. A 118, 10955 (2014).
dc.identifier.doi10.1063/1.4926539
dc.identifier.issn0021-9606
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4926539
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24145
dc.issue.number2
dc.journal.titleJournal of Chemical Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDFIS 2012-31230
dc.relation.projectIDSFRH/BPD/68979/2010
dc.relation.projectIDUID/FIS/00068/2013
dc.relation.projectIDPTDC/FIS-ATO/1832/201
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordNegative-ion formation
dc.subject.keywordElastic-scattering
dc.subject.keywordVibrational-excitation
dc.subject.keywordBoron-trifluoride
dc.subject.keywordPolyatomic-molecules
dc.subject.keywordSections
dc.subject.keywordCollisions
dc.subject.keywordImpact
dc.subject.keywordResonance
dc.subject.keywordSpectroscopy.
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleCrossed-beam experiment for the scattering of low- and intermediate-energy electrons from BF3: A comparative study with XF3 (X = C, N, and CH) molecules
dc.typejournal article
dc.volume.number143
dspace.entity.typePublication
relation.isAuthorOfPublicationfd97b031-5b10-40ab-beb5-8f192e632ca3
relation.isAuthorOfPublication.latestForDiscoveryfd97b031-5b10-40ab-beb5-8f192e632ca3
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Blanco Ramos F 04 LIBRE.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Collections