Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Upper semifinite hyperspaces as unifying tools in normal Hausdorff topology

dc.contributor.authorGonzález Gómez, A.
dc.contributor.authorAlonso Morón, Manuel
dc.date.accessioned2023-06-20T10:33:32Z
dc.date.available2023-06-20T10:33:32Z
dc.date.issued2007
dc.description.abstractIn this paper we use the upper semifinite topology in hyperspaces to get results in normal Hausdorff topology. The advantage of this point of view is that the upper semifinite topology, although highly non-Hausdorff, is very easy to handle. By this way we treat different topics and relate topological properties on spaces with some topological properties in hyperspaces. This hyperspace is, of course, determined by the base space. We prove here some reciprocals which are not true for the usual Vietoris topology. We also point out that this framework is a very adequate one to construct the Cˇ ech–Stone compactification of a normal space. We also describe compactness in terms of the second countability axiom and of the fixed point property. As a summary we relate non-Hausdorff topology with some facts in the core of normal Hausdorff topology. In some sense, we reinforce the unity of the subject.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20316
dc.identifier.citationAlonso Morón, M., y González Gómez, A. «Upper Semifinite Hyperspaces as Unifying Tools in Normal Hausdorff Topology». Topology and Its Applications, vol. 154, n.o 10, mayo de 2007, pp. 2142-53. DOI.org (Crossref), https://doi.org/10.1016/j.topol.2006.03.031.
dc.identifier.doi10.1016/j.topol.2006.03.031
dc.identifier.issn0166-8641
dc.identifier.officialurlhttps//doi.org/10.1016/j.topol.2006.03.031
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0166864107000211
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50510
dc.issue.number10
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final2153
dc.page.initial2142
dc.publisherElsevier Science
dc.relation.projectIDBFM 2003-00825
dc.rights.accessRightsrestricted access
dc.subject.cdu515.12
dc.subject.keywordUpper semifinite topology
dc.subject.keywordCompactness
dc.subject.keywordCech–Stone compactification
dc.subject.keywordFixed point proper
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleUpper semifinite hyperspaces as unifying tools in normal Hausdorff topologyen
dc.typejournal article
dc.volume.number154
dspace.entity.typePublication
relation.isAuthorOfPublication95bd8189-3086-4e0f-94f6-06dee8c8f675
relation.isAuthorOfPublication.latestForDiscovery95bd8189-3086-4e0f-94f6-06dee8c8f675

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alonso_Morón-Upper.pdf
Size:
282.61 KB
Format:
Adobe Portable Document Format

Collections