Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Indices of the iterates of R-3-homeomorphisms at fixed points which are isolated invariant sets

dc.contributor.authorLe Calvez, Patrice
dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.contributor.authorSalazar, J. M.
dc.date.accessioned2023-06-20T00:24:53Z
dc.date.available2023-06-20T00:24:53Z
dc.date.issued2010
dc.descriptionDedicated to Professor Jose M. Montesinos on the occasion of his 65th birthday
dc.description.abstractLet U subset of R-3 be an open set and f : U -> f(U) subset of R-3 be a homeomorphism. Let p is an element of U be a fixed point. It is known that if {p} is not an isolated invariant set, then the sequence of the fixed-point indices of the iterates of f at p, (i(f(n), p))(n >=) (1), is, in general, unbounded. The main goal of this paper is to show that when {p} is an isolated invariant set, the sequence (i(f(n), p))(n >= 1) is periodic. Conversely, we show that, for any periodic sequence of integers (I-n)(n >= 1) satisfying Dold's necessary congruences, there exists an orientation-preserving homeomorphism such that i(f(n), p) = I-n for every n >= 1. Finally we also present an application to the study of the local structure of the stable/unstable sets at p.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.sponsorshipANR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18099
dc.identifier.doi10.1112/jlms/jdq050
dc.identifier.issn0024-6107
dc.identifier.officialurlhttp://jlms.oxfordjournals.org/content/82/3/683.full.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42535
dc.issue.number3
dc.journal.titleJournal of the london mathematical society-second series
dc.language.isoeng
dc.page.final696
dc.page.initial683
dc.publisherOxford University Press
dc.relation.projectIDMTM 2009-07030
dc.relation.projectIDANR-06-BLAN-0030-01
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.cdu515.1
dc.subject.keywordFixed point index
dc.subject.keywordDold’s congruences
dc.subject.keywordConley index
dc.subject.keywordhomeomorphism
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmTopología
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1210 Topología
dc.titleIndices of the iterates of R-3-homeomorphisms at fixed points which are isolated invariant sets
dc.typejournal article
dc.volume.number82
dcterms.referencesI. K. Babenko and S. A. Bogatyi, The behavior of the index of periodic points under iterations of a mappin`, Math.USSR Izv. 38 (1992) 1–26. R. F. Brown, The Lefschetz fixed point theorem (Scott Foreman Co. Glenview Illinois, London, 1971). S. N. Chow, J. Mallet-Paret and J. A. Yorke, A periodic orbit index which is a bifurcation invariant,Geometric dynamics, Lecture Notes in Mathematics 1007 (Springer, Berlin 1983) 109–131. A. Dold, 'Fixed point indices of iterated maps’, Invent.Math. 74 (1983) 419–435. J. Franks and D. Richeson, ‘Shift equivalence and the Conley index’, Trans. Amer. Math. Soc. 7 (2000)3305–3322. G. Graff and P. Nowak-Przygodzki, ‘Fixed point indices of iterations of C1-maps in R3’, Discrete Contin. Dyn. Syst. 16 (2006) 843–856. J. H. Hubbard and R. W. Oberste-Vorth, ‘Linked solenoid mappings and the non-transversality locus invariant’, Indiana Univ. Math. J. 50 (2001) 553–566. J. Jezierski and W. Marzantowicz, ‘Homotopy methods in topological fixed and periodic points theory (Springer, Berlin, 2005). A. Katok and B. Hasselblatt, ‘Introduction to the modern theory of dynamical systems (Cambridge University Press,Cambridge, 1995). P. Le Calvez, ‘Dynamique des hom´eomorphismes du plan au voisinage d’un point fixe’, Ann. Sci. ´ Ecole.Norm. Sup. (4) 36 (2003) 139–171. P. Le Calvez and J.C. Yoccoz, ‘Un theoreme d’indice pour les hom´eomorphismes du plan au voisinage d’un point fixe’, Ann. of Math. 146 (1997) 241–293. P. Le Calvez and J.C. Yoccoz, ‘Suite des indices de Lefschetz des it´er´es pour un domaine de Jordan qui est un bloc isolant’, Unpublished. A. Manning, ‘Topological entropy and the first homology group’, Dynamical systems, Lecture Notes in Mathematics 468 (Springer, Berlin, 1975) 185–190. S. Mardesic and J. Segal, Shape theory (North-Holland,Amsterdam, 1982). R. D. Nussbaum, ‘The fixed point index and some applications’, S´eminaire de Mathematiques superieures (Les Presses de L’Universit´e de Montreal, Montreal, 1985). C. Pugh, ‘On the entropy conjecture’, Dynamical systems,Lecture Notes in Mathematics 468. (Springer,Berlin, 1975), 257–261. C. Robinson, ‘Dynamical systems. Stability, symbolic dynamics, and chaos’, Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1995). F. R. Ruiz del Portal and J. M. Salazar, ‘Fixed point index of iterations of local homeomorphisms of the plane: a Conley-index approach’, Topology 41 (2002) 1199-1212. F. R. Ruiz del Portal and J. M. Salazar, ‘Indices of the iterates of R3-homeomorphisms at Lyapunov stable fixed points’, J. Differential Equations 244 (2008) 1141–1156. F. R. Ruiz del Portal and J. M. Salazar, ‘Realization of all Dold’s congruences with stability’, J.Differential Equations 249 (2010) 989–1013. M. Shub, A. Fathi and R. Langevin, Global stability of dynamical systems (Springer, New York, 1987). M. Shub and D. Sullivan, ‘A remark on the Lefschetz fixed point formula for differentiable maps’,Topology 13 (1974) 189–191. S. Smale, ‘Differentiable dynamical systems’, Bull. Amer. Math. Soc. 73 (1967) 747–817. E. Spanier, Algebraic topology, McGraw-Hill Series in Higher Mathematics (McGraw-Hill, New York,1966). R. M. Switzer, ‘Algebraic topology — homology and homotopy’, Grundlehren der Mathematischen Wissenschaften 212 (Springer, New York, 1975). P. Walters, An introduction to ergodic theory (Springer, Berlin, 1982). Y. Yomdin, ‘Volume growth and entropy’, Israel J. Math. 57 (1987) 285–300.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RomeroRuiz05libre.pdf
Size:
392.37 KB
Format:
Adobe Portable Document Format

Collections