Global approximation theorems for partial differential equations and applications
Loading...
Download
Official URL
Full text at PDC
Publication date
2019
Defense date
17/07/2018
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
Muchos problemas sobre el comportamiento de soluciones de ecuaciones en derivadas parciales pueden resolverse de un modo constructivo. Consideremos por ejemplo que queremos saber si pueden aparecer estructuras topologicas complejas en las soluciones de una ecuacion. Entonces podemos tomar una de esas hipersuperficies topologicas y construir una solucion (no necesariamente explícita) que la contenga, salvo un pequeño difeomorfismo. Muchas de estas preguntas surgen tambien en física y responderlas nos permitira entender mejor lo que subyace tras el fenomeno físico. La estrategia para tratar este tipo de problemas se debe a A. Enciso y D. Peralta-Salas y fue inicialmente empleada en fluidos ideales con estructuras anudadas de vorticidad y para prescribir conjuntos de nivel de soluciones aciertas ecuaciones elípticas. Se basa en la construccion de una solucion local de la ecuacion conveniente y su posterior extension a una solucion global salvo pequeños errores de modo que se preserven ciertas propiedades de la solucion. Este enfoque esta limitado por la existencia de los teoremas de aproximacion que garantizan el paso de la solucion local a la global con un error controlado. Practicamente toda la literatura al respecto esta dedicada a (ciertas clases de) operadores elípticos...
Many open problems about the behavior of solutions to partial dierential equations can be solved in a constructive way. For instance, if we are wondering whether intricate topological structures can emerge in the solutions to an equation, let us take a hypersurface with some prescribed topology and construct (not necessarily explicitly) a solution which exhibit this structure (up to small dieomorphisms). Many of these questions arise also in physics and their answer provides a better understanding of the physical phenomena.The strategy to deal with these problems was introduced by A. Enciso and D. Peralta-Salas in the context of vortex structures of stationary inviscid incompressible fluids and level sets of solutions to some elliptic equations. It is based on the construction of a suitable local solution to the equation and its subsequent promotion to a global solution up to controllable errors so that some properties are preserved. Nevertheless, this approach is limited by the existence of the approximation theorems that stand behind the step from local to global solutions, and almost the whole literature on this topic is devoted to (some classes of) elliptic operators...
Many open problems about the behavior of solutions to partial dierential equations can be solved in a constructive way. For instance, if we are wondering whether intricate topological structures can emerge in the solutions to an equation, let us take a hypersurface with some prescribed topology and construct (not necessarily explicitly) a solution which exhibit this structure (up to small dieomorphisms). Many of these questions arise also in physics and their answer provides a better understanding of the physical phenomena.The strategy to deal with these problems was introduced by A. Enciso and D. Peralta-Salas in the context of vortex structures of stationary inviscid incompressible fluids and level sets of solutions to some elliptic equations. It is based on the construction of a suitable local solution to the equation and its subsequent promotion to a global solution up to controllable errors so that some properties are preserved. Nevertheless, this approach is limited by the existence of the approximation theorems that stand behind the step from local to global solutions, and almost the whole literature on this topic is devoted to (some classes of) elliptic operators...
Description
Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 17-07-2018