Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A note on the range of the derivatives of analytic approximations of uniformly continuous functions on co

dc.contributor.authorJiménez Sevilla, María Del Mar
dc.date.accessioned2023-06-20T09:30:28Z
dc.date.available2023-06-20T09:30:28Z
dc.date.issued2008
dc.description.abstractThis paper is a contribution to the body of results concerning the size of the set of derivatives of differentiable functions on a Banach space. The results so far have consisted of examples of highly differentiable bump functions (or functions approximating a given continuous function) whose set of derivatives either is surprisingly small or has a given shape. The paper under review treats the case of analytic smoothness. The main result states that every uniformly continuous function on c0 (more generally on a space with property (K)) can be approximated by a real-analytic function whose set of derivatives is contained in T p>0 lp. This is a significant step forward, as analytic functions are substantially harder to deal with than C1 smooth ones. Indeed, a local perturbation of an analytic function necessarily changes the values of the function everywhere. Also of particular value is the quite precise and elegant description of the set of derivatives of the approximating function.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educacion y Ciencia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/13813
dc.identifier.doi10.1016/j.jmaa.2008.07.050
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/0022247X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49758
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final580
dc.page.initial573
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordApproximation by analytic functions
dc.subject.keywordRange of the derivatives
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleA note on the range of the derivatives of analytic approximations of uniformly continuous functions on co
dc.typejournal article
dc.volume.number348
dcterms.references[1] D. Azagra and M. Cepedello, Uniform approximation of continuous mappings by smooth mappings with no critical points on Hilbert manifolds, Duke Math. J. 124 (2004) 207-226. [2] D. Azagra and R. Deville, James' theorem fails for starlike bodies, J. Funct. Anal. 180 (2001), 328-346. [3] D. Azagra and M. Jiménez-Sevilla, The failure of Rolle's theorem in in infinite-dimensional Banach spaces, J. Funct. Anal. 182 (2001) 207-226. [4] D. Azagra and M. Jiménez-Sevilla, Approximation by smooth functions with no critical points on separable Banach spaces, J. Funct. Anal. 242 (2007), no. 1, 1-36. [5] D. Azagra, R. Deville and M. Jiménez-Sevilla, On the range of the derivatives of a smooth mapping between Banach spaces, Proc. Cambridge Phil. Soc. 134 (2003), no. 1, 163-185. [6] J. M. Borwein, M. Fabian and P.D. Loewen, The range of the gradient of a Lipschitz C1-smooth bump in infinite dimensions, Isr. J. Math. 132 (2002), 239-251. [7] M. Cepedello and P. Hájek Analytic approximations of uniformly continuous functions in real Banach spaces, J. Math. Anal. Appl. 256 (2001), 80-98. [8] R. Deville and P. Hájek, On the range of the derivative of Gâteaux-smooth functions on separable Banach spaces, Isr. J. Math. 145 (2005), 257-269. [9] M. Fabian, O. F. K. Kalenda and J. Kolár, Filling analytic sets by the derivatives of C1-smooth bumps, Proc. Amer. Math. Soc 133 (2005), no. 1, 295-303. [10] J. Ferrer, Rolle's Theorem for polynomials of degree four in a Hilbert space, Journal of Mathematical Analysis and Applications 265 (2002), 322-331. [11] R. Fry, Analytic approximation on c0, J. Funct. Analysis 158 (1998), no. 2, 509-520. [12] T. Gaspari, On the range of the derivative of a real-valued function with bounded support, Studia Math. 153 (2002), no. 1, 81-99. [13] P. Hájek, Smooth functions on c0, Israel Journal of Mathematics 104 (1998), 17-27. [14] P. Hájek and M. Johanis, Smooth approximations without critical points, Cent. Eur. J. Math. 1 (2003), no. 3, 284-291. [15] J. Kurzweil, On approximations in real Banach spaces, Studia Math. 14 (1954), 214-231. [16] J. Mújica, Complex analysis in Banach spaces, North-Holland Mathematical Studies 120, Elsevier (1986). [17] S.A. Shkarin, On Rolle's theorem in infinite-dimensional Banach spaces, Translated from: Mat. Zametki 51 (3) (1992) 128-136.
dspace.entity.typePublication
relation.isAuthorOfPublication36c2a4e7-ac6d-450d-b64c-692a94ff6361
relation.isAuthorOfPublication.latestForDiscovery36c2a4e7-ac6d-450d-b64c-692a94ff6361

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2008anoterange.pdf
Size:
223.71 KB
Format:
Adobe Portable Document Format

Collections