Localization of non-linearly modeled autonomous mobile
robots using out-of-sequence measurements
dc.contributor.author | Besada Portas, Eva | |
dc.contributor.author | López Orozco, José Antonio | |
dc.contributor.author | Lanillos Pradas, Pablo | |
dc.contributor.author | Cruz García, Jesús Manuel de la | |
dc.date.accessioned | 2023-06-20T03:31:24Z | |
dc.date.available | 2023-06-20T03:31:24Z | |
dc.date.issued | 2012-03 | |
dc.description | This work has been supported by the Spanish Grants DPI2009-14552-C02-01 and CAM S-0505/DPI 0391. | |
dc.description.abstract | This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost. | |
dc.description.department | Sección Deptal. de Arquitectura de Computadores y Automática (Físicas) | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Grants | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20420 | |
dc.identifier.doi | 10.3390/s120302487 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.officialurl | http://www.mdpi.com/1424-8220/12/3/2487/pdf | |
dc.identifier.relatedurl | http://www.mdpi.com/1424-8220/12/3/2487/pdf | |
dc.identifier.relatedurl | http://www.mdpi.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/43702 | |
dc.issue.number | 3 | |
dc.journal.title | Sensors | |
dc.language.iso | eng | |
dc.page.final | 2518 | |
dc.page.initial | 2487 | |
dc.publisher | MDPI AG | |
dc.relation.projectID | DPI2009-14552-C02-01 | |
dc.relation.projectID | CAM S-0505/DPI 0391 | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 004 | |
dc.subject.keyword | Multisensor Fusion | |
dc.subject.keyword | Control-Systems | |
dc.subject.keyword | Tracking | |
dc.subject.ucm | Lenguajes de programación | |
dc.subject.unesco | 1203.23 Lenguajes de Programación | |
dc.title | Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements | |
dc.type | journal article | |
dc.volume.number | 12 | |
dcterms.references | 1. Anderson, B.D.O.; Moore, J.B. Optimal Filtering; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1979. 2. Bar-Shalom, Y.; Li, X.R. Estimation and Tracking: Principles,Techniques and Software; Artech House: London, UK, 1993. 3. Mutambara, G.O. Decentralized Estimation and Control for Multisensor Fusion; CRC Press LLC: Boca Raton, FL, USA, 1998. 4. Doucet, A.; Godsill, S.; Andrieu, C. On sequential monte carlo sampling methods for bayesian filtering. Stat. Comput. 2000, 10, 197–208. 5. Bar-Shalom, Y. Update with out of sequence measurements in tracking: Exact solution. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 769–778. 6. Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M.I.; Sastry, S.S. Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 2004, 49, 1453–1464. 7. Hespanha, J.P.; Naghhtabrizi, P.; Xu., Y. A survey of recent results in networked control systems. Proc. IEEE 2007, 95, 138–162. 8. Xia, Y.; Fu, M.; Shi, P. Analysis and Synthesis of Dynamical Systems with Time-Delays; Springer-Verlag: Berlin, Heidelberg, Germany, 2009. 9. Xia, Y.; Fu, M.; Liu, G. Analysis and Synthesis of Networked Control Systems; Springer: Berlin, Heidelberg, Germany, 2011. Sensors 2012, 12 2514 10. Kaempchen, N.; Dietmayer, K. Data Synchronization Strategies for Multi-Sensor Fusion. In Proceedings of the IEEE Conference on Intelligent Transportation Systems, Madrid, Spain, November 2003; pp. 1–9. 11. Lopez-Orozco, J.A.; de la Cruz, J.M.; Besada, E.; Ruiperez, P. An asynchronous robust and distributed multisensor fusion system for mobile robots. Int. J. Robot. Res. 2000, 19, 914–932. 12. Kosaka, A.; Meng, M.; Kak, A.C. Vision-Guided Mobile Robot Navigation Using Retroactive Updating of Position Uncertainty. In Proceedings of the 1993 IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; Volume 2, pp. 1–7. 13. Seyfried, J.; Na, R.E.; Schmoeckel, F.; Thiel, M.; B¨urkle, A.; W¨orn, H. Controlling cm3 Sized Autonomous Micro Robots Operating in the Micro and Nano World. In Proceedings of the 6th International Conference Climbing and Walking Robots and their Supporting Technologies (CLAWAR ’03), Catania, Italy, 17-19 September 2003; pp. 627–634. 14. Alcocer, A.; Oliveira, P.; Pascoal, A. Study and implementation of an EKF GIB-based underwater positioning system. Control Eng. Pract. 2007, 15, 689–701. 15. Besada-Portas, E.; Lopez-Orozco, J.A.; Besada, J.; de la Cruz, J.M. Multisensor fusion for linear control systems with asynchronous, Out-of-Sequence and erroneous data. Automatica 2011, 47, 1399–1408. 16. Alouani, A.T.; Rice, T.R. On Optimal Asynchronous Track Fusion. In Proceedings of the 1st Australian Data Fusion Symposium (ADFS ’96), Adelaide, SA, Australia, 21–22 November 1996; pp. 147–152. 17. Alouani, A.T.; Gray, J.E.; McCabe, D.H. Theory of distributed estimation using multiple asynchronous sensors. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 717–722. 18. Challa, S.; Legg, J.A. Track-to-Track Fusion of Out-of-Sequence Tracks. In Proceedings of the 5th International Conference on Information Fusion, Annapolis, MD, USA, 8–11 July 2002; pp. 919–926. 19. Novoselsky, A.; Sklarz, S.E.; Dorfan, M. Track to Track Fusion Using Out-of-Sequence Track Information. In Proceedings of the 10th International Conference on Information Fusion, Quebec, QC, Canada, 9–12 July 2007; pp. 1–5. 20. Shen, X.; Zhu, Y.; Wang, D.; You, Z.; Song, E. Optimal Distributed Fusion Update with Same Lag Time Out-of-Sequence Measurements. In Proceedings of the 2008 IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 21–24 September 2008; pp. 613–618. 21. Xia, Y.; Shang, J.; Chen, J.; Liu, G. Networked data fusion with packet losses and variable delays. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 1107–1120. 22. Julier, S.J.; Uhlmann, J.K. A New Extension of the Kalman Filter to Nonlinear Systems. In Proceedings of Aerosense: The 11th International SymposiumArerospace/Defense Sensing, Simulation and Controls, Multi Sensor Fusion, Tracking and Resource Management II, Orlando, FL, USA, 21 April 1997; pp. 182–193. 23. Evensen, G. Sequential data assimilation with nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 1994, 99, 143–162. 24. van der Merwe, R.; Doucet, A.; de Freitas, N.; Wan, E. The Unscented Particle Filter. Advances in Neural Information Processing Systems 2001, 13, 2001; 584-590. Sensors 2012, 12 2515 25. Klaas, M.; de Freitas, N.; Doucet, A. Toward Practical N2 Monte Carlo: The Marginal Particle Filter. In Proceedings of of the 21st Conference in Uncertainty in Artificial Intelligence (UAI ’05), Edinburgh, Scotland, 26–29 July 2005; AUAI Press: Arlington, VA, USA, 2005; pp. 308–315. 26. Jia, Z.; Balasuriya, A.; Challa, S. Sensor fusion-based visual target tracking for autonomous vehicles with the out-of-sequence measurement solution. Robot. Auton. Syst. 2008, 56, 157–176. 27. Mallick, M.; Bar-Shalom, Y. Nonlinear out-of-sequence measurement filtering with applications to GMTI tracking. Proc. SPIE 2002, 4728, doi:10.1117/12.478512. 28. Mallick, M.; Krant, J.; Bar-Shalom, Y. Multi-Sensor Multi-Target Tracking Using Out-of-Sequence Measurements. In Proceedings of the 5th International Conference on Information Fusion, Annapolis, MD, USA, 8–11 July 2002; pp. 135–142. 29. Rheaume, F.; Benaskeur, A.R. Forward Prediction-Based Approach to Target-Tracking with Out-of-Sequence Measurements. In Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 1326–1333. 30. Besada-Portas, E.; Lopez-Orozco, J.A.; de la Cruz, J.M. Multisensor Out-of-Sequence Data Fusion for Estimating the State of Dynamic Systems. In Proceedings of the Information, Decision and Control (IDC ’07), Adelaide, Australia, 12–14 February 2007; pp. 348–353. 31. Besada-Portas, E.; Lopez-Orozco, J.A.; Besada, J.; de la Cruz, J.M. Multisensor out of sequence data fusion for estimating the state of discrete control systems. IEEE Trans. Autom. Control 2009, 54, 1728–1732. 32. Mallick, M.; Coraluppi, S.; Carthel, C. Advances in Asynchronous and Decentralized Estimation. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 10–17 March 2001; pp. 1873–1888. 33. Bar-Shalom, Y.; Mallick, M.; Chen, H.; Washburn, R. One step solution for the general out of sequence measurement problem in tracking. IEEE Trans. Aeros. Electron. Syst. 2004, 40, 27–37. 34. Lanzkron, P.J.; Bar-Shalom, Y. A Two-Step Method for Out-of-Sequence Measurements. In Proceedings of the 2004 IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2004a; Volume 3. 35. Chen, J.; Li, J.; Gao, X. Single-step-lag OOSM algorithm based on unscented transformation. Sci. China Inf. Sci. 2011, 54, 664–673. 36. Pornsarayouth, S.; Yamakita, M. Ensemble Kalman Filter for Multisensor Fusion with Multistep Delayed Measurements. In Proceedings of the 2011 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011; pp. 1–10. 37. Orton, M.; Marrs, A. A Bayesian Approach to Multi Target Tracking and Data Fusion with Out-of-Sequence Measuerements. In Proceedings of the IEEE International Workshop on Target Tracking Algorithms and Applications, Enschede, The Netherdlands, 16–17 October 2001; pp. 1–15. 38. Orton, M.R.; Fitzgerald, W.J.; Marrs, A. Incorporation of Out-of-Sequence Measurements in Non-Linear Dynamic Systems Using Particle Filters; Technical Report CUED/F-INFENG/TR.426; University of Cambridge: Cambridge, UK, 2002. 39. Orton, M.; Marrs, A. Particle filters for tracking with out-of-sequence measurements. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 693–702. Sensors 2012, 12 2516 40. Murtra, A.C.; Tur, J.M.M.; Sanfeliu, A. Integrating Asynchronous Observations for Mobile Robot Position Tracking in Cooperative Environments. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 3850–3855. 41. Xue, F.; Liu, Z.; Zhang, X. Out-of-Sequence Measurements Processing Based on Unscented Particle Filter for Passive Target Tracking in Sensor Networks. In Proceedings of the 8th International Conference on Signal Processing, Beijing, China, 16–20 November 2006; pp. 1–6. 42. Orguner, U.; Gustafsson, F. Storage Efficient Particle Filters for the Out of Sequence Measurement Problem. In Proceedings of the 11th International Conference on Information Fusion, Cologne, Germany, 30 June–3 July 2008; pp. 1–8. 43. Mallick, M.; Kirubarajan, M.T.; Arulampalam, S. Out-of-Sequence Measurement Processing for Tracking Ground Target Using Particle Filters. In Proceedings of the 2002 IEEE Aerospace Conference, Big Sky, MT, USA, 9–16 March 2002; Volume 4, pp. 1809–1818. 44. Liu, X.; Oreshkin, B.N.; Coates, M.K. Efficient Delay-Tolerant Particle Filtering through Selective Processing of Out-of-Sequence Measurements. In Proceedings of the 13th Conference in Information Fusion, Edinburgh, UK, 26–29 July 2010; pp. 1–8. 45. Oreshkin, B.N.; Liu, X.; Coates, M.K. Efficient delay-tolerant particle filtering. IEEE Trans.Signal Process. 2011, 59, 143–162. 46. Muntzinger, M.; Aeberhard, M.; Zuther, S.; M¨aahlisch, M.; Schmid, M.; Dickmann, J.; Dietmayer, K. Reliable Automotive Pre-Crash System with Out-of-Sequence Measurement Processing. In Proceedings of the Intelligent Vehicles Symposium (IV), 2010 IEEE, San Diego, CA, USA, 21–24 June 2010; pp. 1022–1027. 47. Efe, M.; Atherton, D.P. Maneuvering Target Tracking Using Adaptive Turn Rate Models in the Interacting Multiple Model Algorithm. In Proceedings of the 35th IEEE Decision and Control, Kobe, Japan, 11–13 December 1996; pp. 3151–3156. 48. Everet, H. Sensors for Mobile Robots. Theory and Application; Wellesley: Norfolk, MA, USA, 1995. 49. Lucas, G. A Tutorial and Elementary Trajectory Model for the Differential Steering System of Robot Wheel Actuators; 2009. Available online: http://rossum.sourceforge.net/papers/DiffSteer/(accessed on 17 February 2012). 50. Leonard, J.; Durrant-Whyte, H. Direct Sonar Sensing for Mobile Robot Navigation; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992. 51. Johnson, R.; Wichern, D. Applied Multivariate Statistical Analysis; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1998. 52. Besada-Portas, E.; Rodriguez-Polo, O.; Lopez-Orozco, J.A.; de la Cruz, J.M. Versatile Sensing Architecture for Autonomous Mobile Robots. In Proceedings of the 6th World Conference on Systematics, Cybernetics and Infomatics, Orlando, FL, USA, 14–18 July 2002; pp. 275–280. 53. Lopez-Orozco, J.A.; de la Cruz, J.M.; Sanz, J.; Flores, J. Multisensor Environment Measures Using Bayesian Networks. In Proceedings of the International Conference on Multisource-Multisensor Information Fusion, Las Vegas, NV, USA, 6–9 July 1998; pp. 487–493. Sensors 2012, 12 2517 54. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Heidelberg, Germany, 2006. 55. Liu, J. Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat. Comput. 1996, 6, 113–119. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0acc96fe-6132-45c5-ad71-299c9dcb6682 | |
relation.isAuthorOfPublication | 26b95994-f79c-4d7c-8de5-a003d6d2a770 | |
relation.isAuthorOfPublication.latestForDiscovery | 0acc96fe-6132-45c5-ad71-299c9dcb6682 |
Download
Original bundle
1 - 1 of 1