Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

An optimized, color-adaptive blue light filtering approach using a novel color space transformation

dc.contributor.authorBayón Fernández, Juan
dc.contributor.authorRecas Piorno, Joaquín
dc.contributor.authorGuijarro Mata-García, María
dc.date.accessioned2025-07-08T13:17:49Z
dc.date.available2025-07-08T13:17:49Z
dc.date.issued2025-07-07
dc.description.abstractWearable screens are part of everyday life, but the blue light they emit can affect the human body. Known as the Blue Hazard, high-energy blue light has been linked to circadian rhythm disruption, reduced focus, cognitive functions, and Computer Vision Syndrome. As screens move closer to the eyes, especially in users with pre-existing eye conditions, effective filtering becomes increasingly important. This work presents a blue light filter that processes images in a novel color space, selectively reducing high-energy pixels while preserving most colors. After filtering, both contrast and image quality remain virtually unchanged, according to several widely used metrics. Physical measurements showed that blue light absorption exceeded theoretical expectations. Spectrophotometric tests across various screens demonstrated consistent performance—typically reducing 30%–40% of blue light for a color difference (ΔE) of 10, with absorption reaching up to 100%. Compared to f.lux and Night Shift, our filter reduces blue emissions by 17% and 34% more, respectively. With an average processing time of 0.012 s per image using basic parallelization (up to 85 Hz), it is well-suited for modern wearable and electronic devices.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipCátedra de Tiflotecnología UCM ONCE
dc.description.statuspub
dc.identifier.citationBayón, J., Recas, J., & Guijarro, M. (2025). An optimized, color-adaptive blue light filtering approach using a novel color space transformation. Elsevier Displays 90, 103124 (2025). https://doi.org/10.1016/j.displa.2025.103124
dc.identifier.doi10.1016/j.displa.2025.103124
dc.identifier.officialurlhttps://doi.org/10.1016/j.displa.2025.103124
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122329
dc.journal.titleDisplays
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDPID2021-125596OB-I00
dc.relation.projectIDPLEC2022-009261
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.keywordComputer vision
dc.subject.keywordBlue filter
dc.subject.keywordBlue light hazard
dc.subject.keywordColor
dc.subject.keywordImage processing
dc.subject.keywordSpectral emission measure
dc.subject.ucmCiencias
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleAn optimized, color-adaptive blue light filtering approach using a novel color space transformation
dc.typejournal article
dc.volume.number90
dspace.entity.typePublication
relation.isAuthorOfPublication8e1e37da-1ec8-4b19-add3-20bbf6cb971c
relation.isAuthorOfPublicationd5518066-7ea8-448c-8e86-42673e11a8ee
relation.isAuthorOfPublication.latestForDiscovery8e1e37da-1ec8-4b19-add3-20bbf6cb971c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An_optimized_color-adaptive.pdf
Size:
4.47 MB
Format:
Adobe Portable Document Format

Collections