Breaking the curve with candels: a Bayesian approach to reveal the non-universality of the dust-attenuation law at high redshift

dc.contributor.authorPérez González, Pablo Guillermo
dc.contributor.authorotros, ...
dc.description© 2016. The American Astronomical Society. Artículo firmado por 16 autores. We thank the referee for thoughtful and constructive feedback on this work. We acknowledge our colleagues in the CANDELS collaboration for very useful comments and suggestions. We also thank the great effort of all the CANDELS team members for their work to provide a robust and valuable data set. We thank Karl Gordon for insightful discussions on the physical implications of these results. We also thank Daniela Calzetti and Veronique Buat for helpful comments and comments. This work is based in part on observations taken by the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. This work is supported by HST program No. GO-12060. Support for Program No. GO-12060 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. We acknowledge the Spanish MINECO grant AYA2012-31277 for funding the contribution from Pablo Pérez Gonzalez. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration (NASA). The authors acknowledge the Texas A&M University Brazos HPC cluster that contributed to the research reported here. URL:
dc.description.abstractDust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant universe. Here, we model the spectral energy distributions of galaxies at z ~ 1.5–3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, L_TIR/L_UV) and UV slope (β). We generalize the shape of the dust law with an empirical model, A_ λ,σ =E(B-V)k_ λ (λ / λ v)^ σ where k_λ is the dust law of Calzetti et al., and show that there exists a correlation between the color excess E(B-V) and tilt δ with δ =(0.62±0.05)log(E(B-V))+(0.26±0.02). Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star formation rate, or β. The change in the dust law with color excess is consistent with a model where attenuation is caused by scattering, a mixed star–dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher redshifts (z>3).
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipNational Aeronautics and Space Administration (NASA)
dc.description.sponsorshipHubble Space Telescope program
dc.description.sponsorshipSpace Telescope Science Institute
dc.identifier.citationAshby, M. L. N., Willner, S. P., Fazio, G. G., et al. 2013, ApJ, 769, 80 Balestra, I., Mainieri, V., Popesso, P., et al. 2010, A&A, 512, A12 Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. 2006, AJ, 132, 1729 Bell, E. F. 2002, ApJ, 577, 150 Boquien, M., Buat, V., Boselli, A., et al. 2012, A&A, 539, A145 Boquien, M., Calzetti, D., Kennicutt, R., et al. 2009, ApJ, 706, 553 Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 1503 Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000 Bruzual, G., Magris, G., & Calvet, N. 1988, ApJ, 333, 673 Buat, V., Giovannoli, E., Burgarella, D., et al. 2010, MNRAS, 409, L1 Buat, V., Giovannoli, E., Heinis, S., et al. 2011, A&A, 533, A93 Buat, V., Iglesias Páramo, J., Seibert, M., et al. 2005, ApJL, 619, L51 Buat, V., Noll, S., Burgarella, D., et al. 2012, A&A, 545, A141 Burgarella, D., Buat, V., & Iglesias Páramo, J. 2005, MNRAS, 360, 1413 Calzetti, D. 1997, in AIP Conf. Ser. 408, The Ultraviolet Universe at Low and High Redshift, ed. W. H. Waller (Melville, NY: AIP), 403 Calzetti, D. 2001, PASP, 113, 1449 Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682 Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582 Calzetti, D., Wu, S.-Y., Hong, S., et al. 2010, ApJ, 714, 1256 Capak, P. L., Carilli, C., Jones, G., et al. 2015, Natur, 522, 455 Casey, C. M., Narayanan, D., & Cooray, A. 2014a, PhR, 541, 45 Casey, C. M., Scoville, N. Z., Sanders, D. B., et al. 2014b, ApJ, 796, 95 Charlot, S., & Fall, S. M. 1993, ApJ, 415, 580 Charlot, S., & Fall, S. M. 2000, ApJ, 539, 718 Chevallard, J., Charlot, S., Wandelt, B., & Wild, V. 2013, MNRAS, 432, 2061 Conroy, C., & Gunn, J. E. 2010, ApJ, 712, 833 Daddi, E., Dannerbauer, H., Stern, D., et al. 2009, ApJ, 694, 1517 Dahlen, T., Mobasher, B., Faber, S. M., et al. 2013, ApJ, 775, 93 Dale, D. A., & Helou, G. 2002, ApJ, 576, 159 Dale, D. A., Helou, G., Contursi, A., Silbermann, N. A., & Kolhatkar, S. 2001, ApJ, 549, 215 Davé, R., Finlator, K., & Oppenheimer, B. D. 2011, MNRAS, 416, 1354 de Barros, S., Reddy, N., & Shivaei, I. 2015, arXiv:1509.05055 Doherty, M., Bunker, A. J., Ellis, R. S., & McCarthy, P. J. 2005, MNRAS, 361, 525 Donley, J. L., Koekemoer, A. M., Brusa, M., et al. 2012, ApJ, 748, 142 Draine, B. T. 2003, ApJ, 598, 1017 Draine, B. T., & Li, A. 2001, ApJ, 551, 807 Elbaz, D., Dickinson, M., Hwang, H. S., et al. 2011, A&A, 533, A119 Elíasdóttir, Á, Fynbo, J. P. U., Hjorth, J., et al. 2009, ApJ, 697, 1725 Ellis, R. S., McLure, R. J., Dunlop, J. S., et al. 2013, ApJL, 763, L7 Fadda, D., Yan, L., Lagache, G., et al. 2010, ApJ, 719, 425 Finkelstein, S. L., Papovich, C., Salmon, B., et al. 2012, ApJ, 756, 164 Forrest, B., Tran, K.-V. H., Tomczak, A. R., et al. 2016, ApJL, 818, L26 Gall, C., Andersen, A. C., & Hjorth, J. 2011a, A&A, 528, A13 Gall, C., Andersen, A. C., & Hjorth, J. 2011b, A&A, 528, A14 Gall, C., Hjorth, J., & Andersen, A. C. 2011c, A&ARv, 19, 43 Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al. 2004, ApJL, 600, L93 Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U., & Wolff, M. J. 2003, ApJ, 594, 279 Gordon, K. D., Clayton, G. C., Witt, A. N., & Misselt, K. A. 2000, ApJ, 533, 236 Gordon, K. D., Misselt, K. A., Witt, A. N., & Clayton, G. C. 2001, ApJ, 551, 269 Gordon, K. D., Witt, A. N., Carruthers, G. R., Christensen, S. A., & Dohne, B. C. 1994, ApJ, 432, 641 Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35 Guo, Q., White, S., Boylan-Kolchin, M., et al. 2011, MNRAS, 413, 101 Guo, Y., Ferguson, H. C., Giavalisco, M., et al. 2013, ApJS, 207, 24 Heckerman, D. 1995, A Tutorial on Learning with Bayesian Networks, in Learning in Graphical Models (Cambridge, MA: MIT Press) Illingworth, G. D., Magee, D., Oesch, P. A., et al. 2013, ApJS, 209, 6 Jeffreys, H. 1935, Journal of the Royal Statistical Society, 98, 39 Jeffreys, H. 1961, Theory of Probability (3rd ed.; Oxford: Oxford Univ. Press) Jones, A. P., Fanciullo, L., Köhler, M., et al. 2013, A&A, 558, A62 Kass, R. E., & Raftery, A. E. 1995, J. Am. Stat. Assoc., 90, 773 Kennicutt, R. C., Jr. 1998, ARA&A, 36, 189 Kennicutt, R. C., Jr., Hao, C.-N., Calzetti, D., et al. 2009, ApJ, 703, 1672 Kinney, A. L., Calzetti, D., Bohlin, R. C., et al. 1996, ApJ, 467, 38 Koekemoer, A. M., Ellis, R. S., McLure, R. J., et al. 2013, ApJS, 209, 3 Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al. 2011, ApJS, 197, 36 Kriek, M., & Conroy, C. 2013, ApJL, 775, L16 Kriek, M., van Dokkum, P. G., Franx, M., et al. 2008, ApJ, 677, 219 Laidler, V. G., Papovich, C., Grogin, N. A., et al. 2007, PASP, 119, 1325 Laursen, P., & Sommer-Larsen, J. 2007, ApJL, 657, L69 Lee, K.-S., Dey, A., Reddy, N., et al. 2011, ApJ, 733, 99 Lee, S.-K., Ferguson, H. C., Somerville, R. S., Wiklind, T., & Giavalisco, M. 2010, ApJ, 725, 1644 Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415 Mancuso, C., Lapi, A., Shi, J., et al. 2016, ApJ, 823, 128 Mann, I., Nakamura, A. M., & Mukai, T. (ed.) 2009, Small Bodies in Planetary Systems, Vol. 758 (Berlin: Springer) Meiksin, A. 2006, MNRAS, 365, 807 Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ, 521, 64 Meurer, G. R., Heckman, T. M., Leitherer, C., et al. 1995, AJ, 110, 2665 Mignoli, M., Cimatti, A., Zamorani, G., et al. 2005, A&A, 437, 883 Mitchell, P. D., Lacey, C. G., Baugh, C. M., & Cole, S. 2013, MNRAS, 435, 87 Morgan, H. L., & Edmunds, M. G. 2003, MNRAS, 343, 427 Muñoz Mateos, J. C., Gil de Paz, A., Boissier, S., et al. 2009, ApJ, 701, 1965 Nardini, E., Risaliti, G., Watabe, Y., Salvati, M., & Sani, E. 2010, MNRAS, 405, 2505 Newton, M. A., Czado, C., & Chappell, R. 1996, J. Am. Stat. Assoc., 91, 142 Noll, S., Pierini, D., Cimatti, A., et al. 2009, A&A, 499, 69 Noll, S., Pierini, D., Pannella, M., & Savaglio, S. 2007, A&A, 472, 455 Noterdaeme, P., Ledoux, C., Srianand, R., Petitjean, P., & Lopez, S. 2009, A&A, 503, 765 Nozawa, T., Asano, R. S., Hirashita, H., & Takeuchi, T. T. 2015, MNRAS, 447, L16 Nozawa, T., Kozasa, T., Umeda, H., Maeda, K., & Nomoto, K. 2003, ApJ, 598, 785 Overzier, R. A., Heckman, T. M., Wang, J., et al. 2011, ApJL, 726, L7 Pacifici, C., Charlot, S., Blaizot, J., & Brinchmann, J. 2012, MNRAS, 421, 2002 Padovani, P., Miller, N., Kellermann, K. I., et al. 2011, ApJ, 740, 20 Papovich, C., Dickinson, M., & Ferguson, H. C. 2001, ApJ, 559, 620 Papovich, C., Finkelstein, S. L., Ferguson, H. C., Lotz, J. M., & Giavalisco, M. 2011, MNRAS, 412, 1123 Papovich, C., Moustakas, L. A., Dickinson, M., et al. 2006, ApJ, 640, 92 Papovich, C., Rudnick, G., Le Floc’h, E., et al. 2007, ApJ, 668, 45 Pei, Y. C. 1992, ApJ, 395, 130 Penner, K., Dickinson, M., Weiner, B., et al. 2015, arXiv:1507.00728 Pforr, J., Maraston, C., & Tonini, C. 2012, MNRAS, 422, 3285 Pforr, J., Maraston, C., & Tonini, C. 2013, MNRAS, 435, 1389 Popesso, P., Dickinson, M., Nonino, M., et al. 2009, A&A, 494, 443 Prevot, M. L., Lequeux, J., Prevot, L., Maurice, E., & Rocca-Volmerange, B. 1984, A&A, 132, 389 Price, S. H., Kriek, M., Brammer, G. B., et al. 2014, ApJ, 788, 86 Reddy, N., Dickinson, M., Elbaz, D., et al. 2012, ApJ, 744, 154 Reddy, N. A., Erb, D. K., Pettini, M., Steidel, C. C., & Shapley, A. E. 2010, ApJ, 712, 1070 Reddy, N. A., Kriek, M., Shapley, A. E., et al. 2015, ApJ, 806, 259 Reddy, N. A., Steidel, C. C., Fadda, D., et al. 2006, ApJ, 644, 792 Rieke, G. H., Alonso Herrero, A., Weiner, B. J., et al. 2009, ApJ, 692, 556 Rujopakarn, W., Rieke, G. H., Eisenstein, D. J., & Juneau, S. 2011, ApJ, 726, 93 Rujopakarn, W., Rieke, G. H., Weiner, B. J., et al. 2013, ApJ, 767, 73 Salmon, B., Papovich, C., Finkelstein, S. L., et al. 2015, ApJ, 799, 183 Salpeter, E. E. 1955, ApJ, 121, 161 Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2015, arXiv:1509.03636 Santini, P., Ferguson, H. C., Fontana, A., et al. 2015, ApJ, 801, 97 Scoville, N., Faisst, A., Capak, P., et al. 2015, ApJ, 800, 108 Seibert, M., Martin, D. C., Heckman, T. M., et al. 2005, ApJL, 619, L55 Shapley, A. E., Reddy, N. A., Kriek, M., et al. 2015, ApJ, 801, 88 Shimakawa, R., Kodama, T., Steidel, C. C., et al. 2015, MNRAS, 451, 1284 Siana, B., Smail, I., Swinbank, A. M., et al. 2009, ApJ, 698, 1273 Sklias, P., Zamojski, M., Schaerer, D., et al. 2014, A&A, 561, A149 Smit, R., Bouwens, R. J., Labbé, I., et al. 2014, ApJ, 784, 58 Smith, D. J. B., & Hayward, C. C. 2015, MNRAS, 453, 1597 Song, M., Finkelstein, S. L., Ashby, M. L. N., et al. 2016, ApJ, 825, 5 Steidel, C. C., Rudie, G. C., Strom, A. L., et al. 2014, ApJ, 795, 165 Sutton, A. J., & Abrams, K. R. 2001, Statistical Methods in Medical Research, 10, 277 Tanaka, M. 2015, ApJ, 801, 20 Tilvi, V., Papovich, C., Tran, K.-V. H., et al. 2013, ApJ, 768, 56 Todini, P., & Ferrara, A. 2001, MNRAS, 325, 726 U, V., Hemmati, S., Darvish, B., et al. 2015, ApJ, 815, 57 Vanzella, E., Cristiani, S., Dickinson, M., et al. 2008, A&A, 478, 83 Ventura, P., Dell’Agli, F., Schneider, R., et al. 2014, MNRAS, 439, 977 Verhamme, A., Dubois, Y., Blaizot, J., et al. 2012, A&A, 546, A111 Walcher, J., Groves, B., Budavári, T., & Dale, D. 2011, Ap&SS, 331, 1 Wang, R., Carilli, C. L., Wagg, J., et al. 2008, ApJ, 687, 848 Wilkins, S. M., Bouwens, R. J., Oesch, P. A., et al. 2016, MNRAS, 455, 659 Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P., & Labbé, I. 2009, ApJ, 691, 1879 Windhorst, R. A., Cohen, S. H., Hathi, N. P., et al. 2011, ApJS, 193, 27 Witt, A. N., & Gordon, K. D. 2000, ApJ, 528, 799 Witt, A. N., Petersohn, J. K., Bohlin, R. C., et al. 1992, ApJL, 395, L5 Wuyts, S., Förster Schreiber, N. M., Lutz, D., et al. 2011a, ApJ, 738, 106 Wuyts, S., Förster Schreiber, N. M., van der Wel, A., et al. 2011b, ApJ, 742, 96 Wuyts, S., Labbé, I., Franx, M., et al. 2007, ApJ, 655, 51 Wuyts, S., Labbé, I., Schreiber, N. M. F., et al. 2008, ApJ, 682, 985 Xue, Y. Q., Luo, B., Brandt, W. N., et al. 2011, ApJS, 195, 10 Yajima, H., Li, Y., Zhu, Q., et al. 2012, ApJ, 754, 118 Zeimann, G. R., Ciardullo, R., Gronwall, C., et al. 2015, ApJ, 814, 162
dc.journal.titleAstrophysical journal
dc.publisherAmerican Astronomical Society
dc.rights.accessRightsopen access
dc.subject.keywordStar-forming galaxies
dc.subject.keyword~ 2
dc.subject.keywordSpectral energy-distribution
dc.subject.keywordOrigins deep survey
dc.subject.keywordGoods-south field
dc.subject.keywordStellar population synthesis
dc.subject.keywordExtragalactic legacy survey
dc.subject.keywordLuminous infrared galaxies
dc.subject.keywordActive galactic nuclei
dc.subject.ucmAstronomía (Física)
dc.titleBreaking the curve with candels: a Bayesian approach to reveal the non-universality of the dust-attenuation law at high redshift
dc.typejournal article
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
3.38 MB
Adobe Portable Document Format