Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder
dc.contributor.author | Domínguez-Adame Acosta, Francisco | |
dc.contributor.author | Malyshev, Andrey | |
dc.contributor.author | Moura, F. A. B. F., de | |
dc.contributor.author | Lyra, M. L. | |
dc.date.accessioned | 2023-06-20T10:48:26Z | |
dc.date.available | 2023-06-20T10:48:26Z | |
dc.date.issued | 2003-11-07 | |
dc.description | © 2003 The American Physical Society. V. A. M. acknowledges support from NATO. Work at Madrid was supported by DGI-MCyT (MAT2000-0734). Work at Brazil was supported by CNPq and CAPES (Brazilian research agencies) and FAPEAL (Alagoas State agency). | |
dc.description.abstract | We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum S(k)similar to1/k(alpha) with alpha>0. de Moura and Lyra [Phys. Rev. Lett. 81, 3735 (1998)10.1103/Phys. Rev. Lett.81.3735] predicted that this model supports a phase of delocalized states at the band center, separated from localized states by two mobility edges, provided alpha>2. We find clear signatures of Bloch-like oscillations of an initial Gaussian wave packet between the two mobility edges and determine the bandwidth of extended states, in perfect agreement with the zero-field prediction. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGI-MCyT | |
dc.description.sponsorship | CNPq | |
dc.description.sponsorship | CAPES | |
dc.description.sponsorship | FAPEAL | |
dc.description.sponsorship | NATO | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27484 | |
dc.identifier.doi | 10.1103/PhysRevLett.91.197402 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevLett.91.197402 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51258 | |
dc.issue.number | 19 | |
dc.journal.title | Physical Review Letters | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | MAT2000-0734 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Metal-Insulator-Transition | |
dc.subject.keyword | Anderson Model | |
dc.subject.keyword | Mobility Edge | |
dc.subject.keyword | Localization | |
dc.subject.keyword | Superlattices. Absence | |
dc.subject.ucm | Física de materiales | |
dc.title | Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder | |
dc.type | journal article | |
dc.volume.number | 91 | |
dcterms.references | [1] E. Abrahams, P.W. Anderson, D. C. Licciardello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). [2] J. C. Flores, J. Phys. Condens. Matter 1, 8471 (1989). [3] D. H. Dunlap, H.-L. Wu, and P.W. Phillips, Phys. Rev. Lett. 65, 88 (1990). [4] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. B. Parravicini, F. Dom´ınguez-Adame, and R. Gómez Alcalá, Phys. Rev. Lett. 82, 2159 (1999). [5] F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998). [6] F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). [7] F. A. B. F. de Moura and M. L. Lyra, Physica (Amsterdam) 266A, 465 (1999). [8] U. Kuhl, F. M. Izrailev, A. A. Krokhin, and H.-J. Stöckmann, Appl. Phys. Lett. 77, 633 (2000). [9] F. Bloch, Z. Phys. 52, 555 (1928). [10] D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625 (1986). [11] H. N. Nazareno and P. E. de Brito, Phys. Rev. B 60, 4629 (1999). [12] C.-K. Peng, S.V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H. E. Stanley, Nature (London) 356, 168 (1992). [13] P. Carpena, P. Bernaola-Galván, P. Ch. Ivanov, and H. E. Stanley, Nature (London) 418, 955 (2002). [14] A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, England, 1995). [15] A. Krokhin, F. Izrailev, U. Kuhl, H.-J. Stöckmann, and S. E. Ulloa, Physica (Amsterdam) 13E, 695 (2002). [16] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W.T. Wetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, New York, 1986), pp. 656–663. [17] N.W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishers, New York, 1976), p. 213. [18] L. Arrachea, Phys. Rev. B 66, 045315 (2002). [19] V. G. Lyssenko, G. Valusis, F. Loser, T. Hasche, K. Leo, M. M. Dignam, and K. Kohler, Phys. Rev. Lett. 79, 301 (1997) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | dbc02e39-958d-4885-acfb-131220e221ba | |
relation.isAuthorOfPublication | b2abe0ef-0417-4f43-8dce-55d3205e22ec | |
relation.isAuthorOfPublication.latestForDiscovery | dbc02e39-958d-4885-acfb-131220e221ba |
Download
Original bundle
1 - 1 of 1