Characterization of some classes of operators on spaces of vector-valued continuous functions
dc.contributor.author | Bombal Gordón, Fernando | |
dc.contributor.author | Cembranos, Pilar | |
dc.date.accessioned | 2023-06-21T02:01:37Z | |
dc.date.available | 2023-06-21T02:01:37Z | |
dc.date.issued | 1985 | |
dc.description.abstract | Let $K$K be a compact Hausdorff space and $E$E, $F$F Banach spaces with $L(E,F)$L(E,F) the space of bounded linear operators from $E$E into $F$F. If $C(K,E)$C(K,E) is the space of all continuous functions from $K$K into $E$E equipped with the sup-norm, then every operator $T\in L(C(K,E),F)$T∈L(C(K,E),F) has a representing measure $m$m of bounded semivariation on the Borel sets of $K$K with values in $L(E,F'')$L(E,F′′) such that $TF=\int_Kf\,dm$TF=∫Kfdm. If $T$T is a weakly compact operator, then $m$m has values in $L(E,F)$L(E,F), $m(E)$m(E) is weakly compact for each Borel set $E$E, and the semivariation of $m$m is continuous at $\varphi$φ. It is known that the converse of this statement does not hold in general, but does hold under additional assumptions. In particular, the authors show that the converse holds if $K$K is a dispersed space. They also show that, in a certain sense, the assumption that $K$K is a dispersed space is necessary; that is, if the converse of the statement above holds for every pair of Banach spaces $E,F$E,F then $K$K must be a dispersed space. A similar result holds for the class of unconditionally converging, Dunford-Pettis or Dieudonne operators. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15155 | |
dc.identifier.doi | 10.1017/S0305004100062678 | |
dc.identifier.issn | 0305-0041 | |
dc.identifier.officialurl | http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2087928 | |
dc.identifier.relatedurl | http://www.cambridge.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64619 | |
dc.issue.number | 1 | |
dc.journal.title | Mathematical Proceedings of the Cambridge Philosophical Society | |
dc.language.iso | eng | |
dc.page.final | 146 | |
dc.page.initial | 137 | |
dc.publisher | Cambridge University Press | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.986.6 | |
dc.subject.cdu | 517.518.45 | |
dc.subject.keyword | Spaces of vector-valued continuous functions | |
dc.subject.keyword | Class of weakly compact | |
dc.subject.keyword | Dunford-Pettis | |
dc.subject.keyword | Dieudonn´e or unconditionally converging operators | |
dc.subject.keyword | Representing measure | |
dc.subject.keyword | Semi-variation | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Characterization of some classes of operators on spaces of vector-valued continuous functions | |
dc.type | journal article | |
dc.volume.number | 97 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1