Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

Characterization of some classes of operators on spaces of vector-valued continuous functions

dc.contributor.authorBombal Gordón, Fernando
dc.contributor.authorCembranos, Pilar
dc.date.accessioned2023-06-21T02:01:37Z
dc.date.available2023-06-21T02:01:37Z
dc.date.issued1985
dc.description.abstractLet $K$K be a compact Hausdorff space and $E$E, $F$F Banach spaces with $L(E,F)$L(E,F) the space of bounded linear operators from $E$E into $F$F. If $C(K,E)$C(K,E) is the space of all continuous functions from $K$K into $E$E equipped with the sup-norm, then every operator $T\in L(C(K,E),F)$T∈L(C(K,E),F) has a representing measure $m$m of bounded semivariation on the Borel sets of $K$K with values in $L(E,F'')$L(E,F′′) such that $TF=\int_Kf\,dm$TF=∫Kfdm. If $T$T is a weakly compact operator, then $m$m has values in $L(E,F)$L(E,F), $m(E)$m(E) is weakly compact for each Borel set $E$E, and the semivariation of $m$m is continuous at $\varphi$φ. It is known that the converse of this statement does not hold in general, but does hold under additional assumptions. In particular, the authors show that the converse holds if $K$K is a dispersed space. They also show that, in a certain sense, the assumption that $K$K is a dispersed space is necessary; that is, if the converse of the statement above holds for every pair of Banach spaces $E,F$E,F then $K$K must be a dispersed space. A similar result holds for the class of unconditionally converging, Dunford-Pettis or Dieudonne operators.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15155
dc.identifier.doi10.1017/S0305004100062678
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2087928
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64619
dc.issue.number1
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final146
dc.page.initial137
dc.publisherCambridge University Press
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordSpaces of vector-valued continuous functions
dc.subject.keywordClass of weakly compact
dc.subject.keywordDunford-Pettis
dc.subject.keywordDieudonn´e or unconditionally converging operators
dc.subject.keywordRepresenting measure
dc.subject.keywordSemi-variation
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleCharacterization of some classes of operators on spaces of vector-valued continuous functions
dc.typejournal article
dc.volume.number97
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
09.pdf
Size:
964.41 KB
Format:
Adobe Portable Document Format

Collections