Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Characterization of some classes of operators on spaces of vector-valued continuous functions

dc.contributor.authorBombal Gordón, Fernando
dc.contributor.authorCembranos, Pilar
dc.date.accessioned2023-06-21T02:01:37Z
dc.date.available2023-06-21T02:01:37Z
dc.date.issued1985
dc.description.abstractLet $K$K be a compact Hausdorff space and $E$E, $F$F Banach spaces with $L(E,F)$L(E,F) the space of bounded linear operators from $E$E into $F$F. If $C(K,E)$C(K,E) is the space of all continuous functions from $K$K into $E$E equipped with the sup-norm, then every operator $T\in L(C(K,E),F)$T∈L(C(K,E),F) has a representing measure $m$m of bounded semivariation on the Borel sets of $K$K with values in $L(E,F'')$L(E,F′′) such that $TF=\int_Kf\,dm$TF=∫Kfdm. If $T$T is a weakly compact operator, then $m$m has values in $L(E,F)$L(E,F), $m(E)$m(E) is weakly compact for each Borel set $E$E, and the semivariation of $m$m is continuous at $\varphi$φ. It is known that the converse of this statement does not hold in general, but does hold under additional assumptions. In particular, the authors show that the converse holds if $K$K is a dispersed space. They also show that, in a certain sense, the assumption that $K$K is a dispersed space is necessary; that is, if the converse of the statement above holds for every pair of Banach spaces $E,F$E,F then $K$K must be a dispersed space. A similar result holds for the class of unconditionally converging, Dunford-Pettis or Dieudonne operators.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15155
dc.identifier.doi10.1017/S0305004100062678
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2087928
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64619
dc.issue.number1
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final146
dc.page.initial137
dc.publisherCambridge University Press
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordSpaces of vector-valued continuous functions
dc.subject.keywordClass of weakly compact
dc.subject.keywordDunford-Pettis
dc.subject.keywordDieudonn´e or unconditionally converging operators
dc.subject.keywordRepresenting measure
dc.subject.keywordSemi-variation
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleCharacterization of some classes of operators on spaces of vector-valued continuous functions
dc.typejournal article
dc.volume.number97
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
09.pdf
Size:
964.41 KB
Format:
Adobe Portable Document Format

Collections