Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Homogeneous Quaternionic Kähler Structures of Linear Type

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMartínez Gadea, Pedro
dc.contributor.authorSwann, Andrew
dc.date.accessioned2023-06-20T10:36:55Z
dc.date.available2023-06-20T10:36:55Z
dc.date.issued2004
dc.description.abstractA classification of homogeneous quaternionic Kähler structures by real tensors is given and related to Fino’s representation theoretic decomposition. A relationship between the modules whose dimension grows linearly and quaternionic hyperbolic space is found. To cite this article: M. Castrillón López et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004). 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22656
dc.identifier.doi10.1016/j.crma.2003.10.035
dc.identifier.issn1631-073X
dc.identifier.officialurlhttp://www.elsevier.com/journals/sas-journal/1935-9810
dc.identifier.relatedurlhttp://www.elsevier.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50779
dc.issue.number1
dc.journal.titleComptes Rendus Mathematique
dc.language.isoeng
dc.page.final70
dc.page.initial65
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu514.744
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleHomogeneous Quaternionic Kähler Structures of Linear Type
dc.typejournal article
dc.volume.number338
dcterms.referencesD.V. Alekseevskii, Riemannian spaces with exceptional holonomy groups, Funct. Anal. Appl. 2 (1968) 97–105. W. Ambrose, I.M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958) 647–669. M. Berger, Remarques sur le groupe d’holonomie des variétés Riemanniennes, C. R. Acad. Sci. Paris Sér. I Math. 262 (1966) 1316–1318. A. Besse, Einstein Manifolds, Springer, Berlin-Heidelberg, 1987. A. Fino, Intrinsic torsion and weak holonomy, Math. J. Toyama Univ. 21 (1998) 1–22. P.M. Gadea, J.A. Oubiña, Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math. 189 (1997) 17–34. P.M. Gadea, A. Montesinos Amilibia, J.Muñoz Masqué, Characterizing the complex hyperbolic space by Kähler homogeneous structures, Soc. 128 (2000) 87–94. A. Gray, L.M. Hervella, The sixteen classes of almost-Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (4)(1980) 35–58. S. Ishihara, Quaternion Kählerian manifolds, J.Differential Geom. 9 (1974) 483–500. V.F. Kiricenko, On homogeneous Riemannian spaces with invariant tensor structures, Soviet Math. Dokl. 21 (1980) 734–737. F. Tricerri, L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, in: London Math. Soc. Lecture Note, vol. 83, Cambridge Univ. Press, Cambridge, UK, 1983.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Castrillón-Homogeneous.pdf
Size:
122.16 KB
Format:
Adobe Portable Document Format

Collections