Homogeneous Quaternionic Kähler Structures of Linear Type
dc.contributor.author | Castrillón López, Marco | |
dc.contributor.author | Martínez Gadea, Pedro | |
dc.contributor.author | Swann, Andrew | |
dc.date.accessioned | 2023-06-20T10:36:55Z | |
dc.date.available | 2023-06-20T10:36:55Z | |
dc.date.issued | 2004 | |
dc.description.abstract | A classification of homogeneous quaternionic Kähler structures by real tensors is given and related to Fino’s representation theoretic decomposition. A relationship between the modules whose dimension grows linearly and quaternionic hyperbolic space is found. To cite this article: M. Castrillón López et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004). 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22656 | |
dc.identifier.doi | 10.1016/j.crma.2003.10.035 | |
dc.identifier.issn | 1631-073X | |
dc.identifier.officialurl | http://www.elsevier.com/journals/sas-journal/1935-9810 | |
dc.identifier.relatedurl | http://www.elsevier.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50779 | |
dc.issue.number | 1 | |
dc.journal.title | Comptes Rendus Mathematique | |
dc.language.iso | eng | |
dc.page.final | 70 | |
dc.page.initial | 65 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 514.744 | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Homogeneous Quaternionic Kähler Structures of Linear Type | |
dc.type | journal article | |
dc.volume.number | 338 | |
dcterms.references | D.V. Alekseevskii, Riemannian spaces with exceptional holonomy groups, Funct. Anal. Appl. 2 (1968) 97–105. W. Ambrose, I.M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958) 647–669. M. Berger, Remarques sur le groupe d’holonomie des variétés Riemanniennes, C. R. Acad. Sci. Paris Sér. I Math. 262 (1966) 1316–1318. A. Besse, Einstein Manifolds, Springer, Berlin-Heidelberg, 1987. A. Fino, Intrinsic torsion and weak holonomy, Math. J. Toyama Univ. 21 (1998) 1–22. P.M. Gadea, J.A. Oubiña, Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math. 189 (1997) 17–34. P.M. Gadea, A. Montesinos Amilibia, J.Muñoz Masqué, Characterizing the complex hyperbolic space by Kähler homogeneous structures, Soc. 128 (2000) 87–94. A. Gray, L.M. Hervella, The sixteen classes of almost-Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (4)(1980) 35–58. S. Ishihara, Quaternion Kählerian manifolds, J.Differential Geom. 9 (1974) 483–500. V.F. Kiricenko, On homogeneous Riemannian spaces with invariant tensor structures, Soviet Math. Dokl. 21 (1980) 734–737. F. Tricerri, L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, in: London Math. Soc. Lecture Note, vol. 83, Cambridge Univ. Press, Cambridge, UK, 1983. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 32e59067-ef83-4ca6-8435-cd0721eb706b | |
relation.isAuthorOfPublication.latestForDiscovery | 32e59067-ef83-4ca6-8435-cd0721eb706b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Castrillón-Homogeneous.pdf
- Size:
- 122.16 KB
- Format:
- Adobe Portable Document Format