Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Resonant cavity modes in gallium oxide microwires

dc.contributor.authorInaki, Lopez
dc.contributor.authorNogales Díaz, Emilio
dc.contributor.authorMéndez Martín, María Bianchi
dc.date.accessioned2023-06-20T03:36:49Z
dc.date.available2023-06-20T03:36:49Z
dc.date.issued2012-06-25
dc.description©2012 American Institute of Physics. This work has been supported by MICINN through Projects MAT 2009-07882 and Consolider Ingenio CSD 2009-00013 and by BSCH-UCM (Project GR35-10A-910146).
dc.description.abstractFabry Perot resonant modes in the optical range 660-770 nm have been detected from single and coupled Cr doped gallium oxide microwires at room temperature. The luminescence is due to chromium ions and dominated by the broad band involving the T-4(2)-(4)A(2) transition, strongly coupled to phonons, which could be of interest in tunable lasers. The confinement of the emitted photons leads to resonant modes detected at both ends of the wires. The separation wavelength between maxima follows the Fabry-Perot dependence on the wire length and the group refractive index for the Ga2O3 microwires.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.sponsorshipBSCH-UCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23910
dc.identifier.doi10.1063/1.4732153
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://apl.aip.org/resource/1/applab/v100/i26/p261910_s1
dc.identifier.relatedurlhttp://apl.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44042
dc.issue.number26
dc.journal.titleApplied physics Letters
dc.language.isoeng
dc.publisherAmer Inst Physics
dc.relation.projectIDMAT 2009-07882
dc.relation.projectIDCSD 2009-00013
dc.relation.projectIDGR35-10A-910146
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordNanowire Lasers
dc.subject.ucmFísica de materiales
dc.titleResonant cavity modes in gallium oxide microwires
dc.typejournal article
dc.volume.number100
dcterms.references1 J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaler, P. D. Yang, and R. J. Saykally, Nature Mater. 1, 106 (2002). 2 S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, Appl. Phys. Lett. 87, 173111 (2005). 3 B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, Appl. Phys. Lett. 91, 131112 (2007). 4 J. C. Johnson, H. Yan, P. Yang, and R. J. Sakally, J. Phys. Chem. B 107, 8816 (2003). 5 M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, Appl. Phys. Lett. 93, 051101 (2008). 6 X. Ye, H. Mao, J. Wang, and Z. Zhu, Appl. Phys. Lett. 99, 261112 (2011). 7 C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 92, 241102 (2008). 8 J. Li, S. Lee, Y. H. Ahn, J.-Y. Park, K. H. Koh, and K. H. Park, Appl. Phys. Lett. 92, 263102 (2008). 9 H. Dong, Z. Chen, L. Sun, J. Lu, W. Xie, H. Tan, C. Jagadish, and X. Shen, Appl. Phys. Lett. 94, 173115 (2009). 10 H. Dong, S. Sun, L. Sun, W. Xie, L. Zhou, X. Shen, and Z. Chen, Appl. Phys. Lett. 98, 011913 (2011). 11 R.-M. Ma, X.-L. Wei, L. Dai, S.-F. Liu, T. Chen. S. Yue, Z. Li, Q. Chen, and G. G. Qin, Nano Lett. 9, 2697 (2009). 12 Y. Xiao, C. Meng, X. Wu, and L. Tong, Appl. Phys. Lett. 99, 023109 (2011). 13 E. Nogales, B. Me´ndez, and J. Piqueras, Nanotechnology 19, 035713 (2008). 14 E. Nogales, J. A. Garcı´a, B. Me´ndez, and J. Piqueras, Appl. Phys. Lett. 91, 133108 (2007). 15 E. Nogales, B. Me´ndez, J. Piqueras, and J. A. García, Nanotechnology 21, 115201 (2009). 16 E. Nogales, J. A. Garcı´a, B. Me´ndez, and J. Piqueras, J. Appl. Phys. 101, 033517 (2007). 17 T. Voss, G. T. Svacha, S. Mu¨ ller, C. Ronning, D. Konjhodzic, F. Marlow, and E. Mazur, Nano Lett. 7, 3675 (2007). 18 X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature (London) 421, 241 (2003). 19 M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, Appl. Phys. Lett. 81, 250 (2002). 20 A. V. Maslov and C. Z. Ning, Appl. Phys. Lett. 83, 1237 (2003). 21 See supplementary material at http://dx.doi.org/10.1063/1.4732153 for x-ray microanalysis measurements.
dspace.entity.typePublication
relation.isAuthorOfPublicationf65096c2-6796-43bf-a661-9e2079b73d1c
relation.isAuthorOfPublication465cfd5b-6dd4-4a48-a6e3-160df06f7046
relation.isAuthorOfPublication.latestForDiscoveryf65096c2-6796-43bf-a661-9e2079b73d1c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MendezBianchi03libre.pdf
Size:
866.1 KB
Format:
Adobe Portable Document Format

Collections