Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: Glycosylation of resveratrol 3-O-β-D-glucoside
Loading...
Official URL
Full text at PDC
Publication date
2020
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Trobo-Maseda, Lara, et al. «Coimmobilization and Colocalization of a Glycosyltransferase and a Sucrose Synthase Greatly Improves the Recycling of UDP-Glucose: Glycosylation of Resveratrol 3-O-β-D-Glucoside». International Journal of Biological Macromolecules, vol. 157, agosto de 2020, pp. 510-21. https://doi.org/10.1016/j.ijbiomac.2020.04.120.
Abstract
Glycosylation is one of the most efficient biocompatible methodologies to enhance the water solubility of natural products, and therefore their bioavailability. The excellent regio- and stereoselectivity of nucleotide sugar-dependent glycosyltransferases enables single-step glycosylations at specific positions of a broad variety of acceptor molecules without the requirement of protection/deprotection steps. However, the need for stoichiometric quantities of high-cost substrates, UDP-sugars, is a limiting factor for its use at an industrial scale. To overcome this challenge, here we report tailor-made coimmobilization and colocalization procedures to assemble a bi-enzymatic cascade composed of a glycosyltransferase and a sucrose synthase for the regioselective 5-O-β-D-glycosylation of piceid with in situ cofactor regeneration. Coimmobilization and colocalization of enzymes was achieved by performing slow immobilization of both enzymes inside the porous support. The colocalization of both enzymes within the porous structure of a solid support promoted an increase in the overall stability of the bi-enzymatic system and improved 50-fold the efficiency of piceid glycosylation compared with the non-colocalized biocatalyst. Finally, piceid conversion to resveratrol 3,5-diglucoside was over 90% after 6 cycles using the optimal biocatalyst and was reused in up to 10 batch reaction cycles accumulating a TTN of 91.7 for the UDP recycling.
Description
Funding
Este trabajo fue apoyado por el proyecto SuSy del 7PM de la UE (Sacarosa sintasa como mediador rentable de reacciones de glicosilación, C-KBBE/3293). Javier Rocha-Martin agradece la beca Juan de la Cierva (IJCI-2014-19260) financiada por el Ministerio de Economía, Industria y Competitividad de España . El Prof. Tom Desmet y la Dra. Margo Diricks (Centro de Biotecnología y Biocatálisis Industrial, Universidad de Gante, Bélgica) proporcionaron amablemente el plásmido para la expresión de SuSyAc. Se agradece la ayuda y sugerencias del Prof. Bernd Nidetzky y el Dr. Alexander Gutmann (Instituto de Biotecnología e Ingeniería Bioquímica, Universidad de Graz, Austria). El Prof. Nidetzky amablemente proporcionó el plásmido para la expresión de UGT71A15. La producción de enzimas se llevó a cabo en la 'Instalación de Fermentación CBMSO'. Agradecemos al Laboratorio de Espectrometría de Masas (Servicio Interdepartamental de Investigaciones (SIdI), Universidad Autónoma de Madrid) por facilitar las instalaciones y asistencia técnica para el análisis RP-HPLC–ESI-Q-TOF-MS, en particular a la Dra. María Teresa Alonso Pascual. También agradecemos al Centro de Microscopía y Confocal (Instituto de Investigaciones Biomédicas “Alberto Sols”, IIBm-CSIC) su amable ayuda con los estudios CLSM. Se agradece la ayuda y sugerencias de María Romero-Fernández (Facultad de Química, Universidad de Nottingham).