Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Note On Cohomology Over Non Algebraically Closed Fields

dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2023-06-20T16:51:53Z
dc.date.available2023-06-20T16:51:53Z
dc.date.issued1999
dc.description.abstractWe characterise algebraically closed fields as those for which the first cohomology group tf^fc^On) of the sheaf On of regular functions over kn vanishes for all positive intergers n.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT PB95-0354.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15328
dc.identifier.doi10.1017/S0004972700033335
dc.identifier.issn0004-9727
dc.identifier.officialurlhttp://journals.cambridge.org/download.php?file=%2FBAZ%2FBAZ60_01%2FS0004972700033335a.pdf&code=d528a7711
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57266
dc.issue.number1
dc.journal.titleBulletin Of The Australian Mathematical Society
dc.language.isoeng
dc.page.final72
dc.page.initial67
dc.publisherAustralian Mathematics
dc.relation.projectID0004-9729/99
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordSheaf Of Regular Functions
dc.subject.keywordFirst Cohomology Group
dc.subject.keywordAlgebraically Closed Fields
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleA Note On Cohomology Over Non Algebraically Closed Fields
dc.typejournal article
dc.volume.number60
dcterms.referencesR. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52 (Springer-Verlag,Berlin, Heidelberg, New York, 1977). J.P. Serre,'Faisceaux algebriques coherents', Ann. of Math. Stud. 61 (1955), 197-258. 72 J.M. A. Tognoli, 'Some basic facts in algebraic geometry on a non algebraically closed field', Ann. Scuola Normal Sup. Pisa Cl. Sci. 3 (1976), 341-359.
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
17.pdf
Size:
43.42 KB
Format:
Adobe Portable Document Format

Collections