Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analysis of PM2.5 and Meteorological Variables Using Enhanced Geospatial Techniques in Developing Countries: A Case Study of Cartagena de Indias City (Colombia)

dc.contributor.authorÁlvarez Aldegunde, José Antonio
dc.contributor.authorFernández Sánchez, Adrián
dc.contributor.authorSaba, Manuel
dc.contributor.authorQuiñones Bolaños, Edgar
dc.contributor.authorÚbeda Palenque, José
dc.date.accessioned2023-06-22T11:05:10Z
dc.date.available2023-06-22T11:05:10Z
dc.date.issued2022-03-22
dc.description.abstractThe dispersion of air pollutants and the spatial representation of meteorological variables are subject to complex atmospheric local parameters. To reduce the impact of particulate matter (PM2.5) on human health, it is of great significance to know its concentration at high spatial resolution. In order to monitor its effects on an exposed population, geostatistical analysis offers great potential to obtain high-quality spatial representation mapping of PM2.5 and meteorological variables. The purpose of this study was to define the optimal spatial representation of PM2.5, relative humidity, temperature and wind speed in the urban district in Cartagena, Colombia. The lack of data due to the scarcity of stations called for an ad hoc methodology, which included the interpolation implementing an ordinary kriging (OK) model, which was fed by data obtained through the inverse distance weighting (IDW) model. To consider wind effects, empirical Bayesian kriging regression prediction (EBK) was implemented. The application of these interpolation methods clarified the areas across the city that exceed the recommended limits of PM2.5 concentrations (Zona Franca, Base Naval and Centro district), and described in a continuous way, on the surface, three main weather variables. Positive correlations were obtained for relative humidity (R2 of 0.47), wind speed (R2 of 0.59) and temperature (R2 of 0.64).en
dc.description.departmentDepto. de Geografía
dc.description.facultyFac. de Geografía e Historia
dc.description.refereedTRUE
dc.description.sponsorshipComisión Europea. ELARCH scholarship
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74850
dc.identifier.doi10.3390/atmos13040506
dc.identifier.issn2073-4433
dc.identifier.officialurlhttps://doi.org/10.3390/atmos13040506
dc.identifier.relatedurlhttps://www.mdpi.com/2073-4433/13/4/506/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72088
dc.issue.number4
dc.journal.titleAtmosphere
dc.language.isoeng
dc.page.initial506
dc.publisherMPDI
dc.relation.projectID552129-EM-1-2014-1-IT-ERAMUNDUS-EMA21
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordgeostatistics
dc.subject.keywordair quality
dc.subject.keywordCartagena de Indias
dc.subject.keywordGIS
dc.subject.keywordPM2.5
dc.subject.keywordPM10
dc.subject.keywordmeteorological variables interpolation
dc.subject.ucmMedio ambiente natural
dc.subject.ucmGeografía
dc.subject.unesco2505 Geografía
dc.titleAnalysis of PM2.5 and Meteorological Variables Using Enhanced Geospatial Techniques in Developing Countries: A Case Study of Cartagena de Indias City (Colombia)
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication04c62ff5-c007-41cd-9935-94583d86af28
relation.isAuthorOfPublication.latestForDiscovery04c62ff5-c007-41cd-9935-94583d86af28

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
atmosphere-13-00506-v2.pdf
Size:
4.79 MB
Format:
Adobe Portable Document Format

Collections