Computation of topological numbers via linear algebra: hypersurfaces, vector fields and vector fields on hypersurfaces.
dc.book.title | Complex geometry of groups | |
dc.contributor.author | Giraldo Suárez, Luis | |
dc.contributor.author | Gómez-Mont, X. | |
dc.contributor.author | Mardešic, P. | |
dc.contributor.editor | Carocca, Ángel | |
dc.contributor.editor | González-Aguilera , Víctor | |
dc.contributor.editor | Rodríguez , Rubí E. | |
dc.date.accessioned | 2023-06-20T21:06:36Z | |
dc.date.available | 2023-06-20T21:06:36Z | |
dc.date.issued | 1999 | |
dc.description | Proceedings of the 1st Iberoamerican "Cruz del Sur" Congress on Geometry held in Olmué, Chile, January 5–11, 1998 | |
dc.description.abstract | In this paper the authors review some work relating the topology to algebraic invariants. Three cases are considered: hypersurfaces, vector fields and vector fields tangent to hypersurfaces. An example is the case of "real Milnor fibres". Let f R :B R →R be a real analytic function which extends to a function f on the closed unit ball B in C n. Assume that 0 is the only critical point of f and denote the real hypersurface f −1 R (δ) by V R + for small positive real δ . Let A denote A/(f 0 ,⋯,f n ) , the quotient of the ring of germs of real analytic functions by the partial derivatives of f . Choose any R-linear map L:A→R which sends the Hessian of f to a positive number; then one has a non-degenerate bilinear form ⟨ , ⟩:A×A→ . A→ L R , for which the signature σ gives χ(V R + )=1−σ . The authors use a result of D. Eisenbud and H. I. Levine [Ann. Math. (2) 106 (1977), no. 1, 19–44, to calculate the signature of the bilinear form; this is notoriously difficult to compute in practice. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21756 | |
dc.identifier.doi | 10.1090/conm/240 | |
dc.identifier.isbn | 0-8218-1381-1 | |
dc.identifier.officialurl | http://www.ams.org/books/conm/240/ | |
dc.identifier.relatedurl | http://www.ams.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/60710 | |
dc.issue.number | 240 | |
dc.page.final | 182 | |
dc.page.initial | 175 | |
dc.page.total | 286 | |
dc.publication.place | Providence | |
dc.publisher | American Mathematical Society | |
dc.relation.ispartofseries | Contemporary Mathematics | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512.76/.77 | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Computation of topological numbers via linear algebra: hypersurfaces, vector fields and vector fields on hypersurfaces. | |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7ee87225-8f33-4c93-9ead-94ce7ee69773 | |
relation.isAuthorOfPublication.latestForDiscovery | 7ee87225-8f33-4c93-9ead-94ce7ee69773 |