Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Computation of topological numbers via linear algebra: hypersurfaces, vector fields and vector fields on hypersurfaces.

dc.book.titleComplex geometry of groups
dc.contributor.authorGiraldo Suárez, Luis
dc.contributor.authorGómez-Mont, X.
dc.contributor.authorMardešic, P.
dc.contributor.editorCarocca, Ángel
dc.contributor.editorGonzález-Aguilera , Víctor
dc.contributor.editorRodríguez , Rubí E.
dc.date.accessioned2023-06-20T21:06:36Z
dc.date.available2023-06-20T21:06:36Z
dc.date.issued1999
dc.descriptionProceedings of the 1st Iberoamerican "Cruz del Sur" Congress on Geometry held in Olmué, Chile, January 5–11, 1998
dc.description.abstractIn this paper the authors review some work relating the topology to algebraic invariants. Three cases are considered: hypersurfaces, vector fields and vector fields tangent to hypersurfaces. An example is the case of "real Milnor fibres". Let f R :B R →R be a real analytic function which extends to a function f on the closed unit ball B in C n. Assume that 0 is the only critical point of f and denote the real hypersurface f −1 R (δ) by V R + for small positive real δ . Let A denote A/(f 0 ,⋯,f n ) , the quotient of the ring of germs of real analytic functions by the partial derivatives of f . Choose any R-linear map L:A→R which sends the Hessian of f to a positive number; then one has a non-degenerate bilinear form ⟨ , ⟩:A×A→ . A→ L R , for which the signature σ gives χ(V R + )=1−σ . The authors use a result of D. Eisenbud and H. I. Levine [Ann. Math. (2) 106 (1977), no. 1, 19–44, to calculate the signature of the bilinear form; this is notoriously difficult to compute in practice.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21756
dc.identifier.doi10.1090/conm/240
dc.identifier.isbn0-8218-1381-1
dc.identifier.officialurlhttp://www.ams.org/books/conm/240/
dc.identifier.relatedurlhttp://www.ams.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60710
dc.issue.number240
dc.page.final182
dc.page.initial175
dc.page.total286
dc.publication.placeProvidence
dc.publisherAmerican Mathematical Society
dc.relation.ispartofseriesContemporary Mathematics
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.76/.77
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleComputation of topological numbers via linear algebra: hypersurfaces, vector fields and vector fields on hypersurfaces.
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublication7ee87225-8f33-4c93-9ead-94ce7ee69773
relation.isAuthorOfPublication.latestForDiscovery7ee87225-8f33-4c93-9ead-94ce7ee69773

Download