This is not the latest version of this item. The latest version can be found here.
Stochastic Topology Design Optimization for Continuous Elastic Materials.
dc.contributor.author | Carrasco, Miguel | |
dc.contributor.author | Ivorra, Benjamin | |
dc.contributor.author | Ramos del Olmo, Angel Manuel | |
dc.date.accessioned | 2023-06-14T17:23:51Z | |
dc.date.available | 2023-06-14T17:23:51Z | |
dc.date.issued | 2013 | |
dc.description.abstract | In this paper, we develop a stochastic model for topology optimization. We find robust structures that minimize the compliance for a given main load having a stochastic behavior. First, we give some properties about the stability of structures carrying several loads. Then, we propose a stochastic model that takes into account the expected value of the compliance and its variance. We show that, similarly to the case of truss structures, these values can be computed with an equivalent deterministic approach and the stochastic model can be transformed into a nonlinear programming problem, reducing the complexity of this kind of problems. Finally, we check our formulation by considering several 2D and 3D numerical examples. For each benchmark case, we consider a set of optimization problems based on different weight coefficients of the compliance, expected-compliance and variance values and compare the robustness of the obtained solutions between them. We see that considering our methodology with an appropriate set of weight coefficients may help to generate structures robust to main loads and their perturbations. | |
dc.description.refereed | TRUE | |
dc.description.status | submitted | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/26211 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/26 | |
dc.journal.title | Computer Methods in Applied Mechanics and Engineering | |
dc.language.iso | eng | |
dc.relation.projectID | MTM2011-22658 | |
dc.relation.projectID | P12-TIC301 | |
dc.relation.projectID | FONDECYT 1130905. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 519.6 | |
dc.subject.keyword | Topology optimization | |
dc.subject.keyword | Structural optimization | |
dc.subject.keyword | Stochastic programming | |
dc.subject.keyword | Finite element method | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Análisis numérico | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 1206 Análisis Numérico | |
dc.title | Stochastic Topology Design Optimization for Continuous Elastic Materials. | |
dc.type | journal article | |
dcterms.references | [1] L. Landau, E. M. Lifshitz, Theory of Elasticity, Oxford, England: Butterworth Heinemann, 1986. [2] M. Bendsøe, O. Sigmund, Topology Optimization: Theory, Methods and Applications, Springer-Verlag, Berlin, 2003. [3] M. Bendsøe, Optimization of structural topology, shape, and material, Springer, 1995. [4] S. Conti, H. Held, M. Pach, M. Rumpf, R. Schultz, Shape optimization under uncertainty, a stochastic programming perspective, SIAM Journal on Optimization 19 (4) (2008) 1610–1632. [5] J. Alberty, C. Carstensen, S. A. Funken, , R. Klose, Matlab implementation of the finite element method in elasticity, Computing 3 (69) (2002) 269–263. [6] P. Ciarlet, The Finite Element Method For Elliptic Problems, North-Holland, Amsterdam, 1980. [7] P. Ciarlet, Mathematical Elasticity, Vol. I, Three Dimensional Elasticity., North-Holland, Amsterdam, Amsterdam, 1988. [8] F. Alvarez, M. Carrasco, Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim. 29 (6) (2005) 470–476. [9] M. Carrasco, Dise˜no ´optimo de estructuras reticulares en elasticidad lineal v´ıa teor´ıa de la dualidad. estudio te´orico y num´erico, Ph.D. thesis, Universidad de Chile, engineering Degree Thesis (2003). [10] M. Carrasco, B. Ivorra, A. M. Ramos, A variance-expected compliance model for structural optimization, J. Optim. Theory Appl. 152 (1) (2012) 136–151. [11] M. Carrasco, B. Ivorra, R. Lecaros, A. M. Ramos, An expected compliance model for topology optimization, Differ. Equ. Appl 4 (1) (2012) 111–120. [12] J. Zhao, C. Wang, Robust topology optimization of structures under loading uncertainty, American Institute of Aeronautics and Astronautics Journal 2 (52) (2014) 398–407. [13] G. Allaire, C. Dapogny, A linearized approach to worst-case design in parametric and geometric shape optimization, Mathematical Models and Methods in Applied Sciences in press (2014) 1–58. [14] A. Ben-Tal, A. Nemirovski, Robust truss topology design via semidefinite programming, SIAM J. Optim. 7 (4) (1997) 991–1016. [15] B. Ivorra, B. Mohammadi, A. M. Ramos, Optimization strategies in credit portfolio management, Journal Of Global Optimization. 2 (43) (2009) 415–427. [16] O. Sigmund, A 99 line topology optimization code written in matlab, Structural and Multidisciplinary Optimization 2 (21) (2001) 120–127. [17] B. Ivorra, D. Hertzog, B. Mohammadi, J. Santiago, Semi-deterministic and genetic algorithms for global optimization of microfluidic proteinfolding devices, International Journal for Numerical Methods in Engineering 66 (2) (2006) 319–333. [18] O. Sigmund, On the design of compliant mechanisms using topology optimization, Mechanics of Structures and Machines 25 (4) (1997) 493–524. [19] J. Tukey, Exploratory Data Analysis, Addison-Wesley series in behavioral sciences, Addison-Wesley Publishing Company, 1977. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1