Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Look-up table and neural network hybrid strategy for wind turbine pitch control

dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-12-10T12:01:44Z
dc.date.available2024-12-10T12:01:44Z
dc.date.issued2021-03-15
dc.description.abstractWind energy plays a key role in the sustainability of the worldwide energy system. It is forecasted to be the main source of energy supply by 2050. However, for this prediction to become reality, there are still technological challenges to be addressed. One of them is the control of the wind turbine in order to improve its energy efficiency. In this work, a new hybrid pitch-control strategy is proposed that combines a lookup table and a neural network. The table and the RBF neural network complement each other. The neural network learns to compensate for the errors in the mapping function implemented by the lookup table, and in turn, the table facilitates the learning of the neural network. This synergy of techniques provides better results than if the techniques were applied individually. Furthermore, it is shown how the neural network is able to control the pitch even if the lookup table is poorly designed. The operation of the proposed control strategy is compared with the neural control without the table, with a PID regulator, and with the combination of the PID and the lookup table. In all cases, the proposed hybrid control strategy achieves better results in terms of output power error.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSierra-García, J. E., & Santos, M. (2021). Lookup table and neural network hybrid strategy for wind turbine pitch control. Sustainability, 13(6), 3235.
dc.identifier.doihttps://doi.org/10.3390/su13063235
dc.identifier.officialurlhttps://www.mdpi.com/2071-1050/13/6/3235
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112310
dc.issue.number6
dc.journal.titleSustainability
dc.language.isoeng
dc.page.initial3235
dc.publisherMdpi
dc.relation.projectIDMCI/AEI/FEDER Project number RTI2018-094902-B-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordPitch control
dc.subject.keywordWind turbines
dc.subject.keywordNeural network
dc.subject.keywordSustainability
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco3311.02 Ingeniería de Control
dc.titleLook-up table and neural network hybrid strategy for wind turbine pitch control
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sustainability-13-03235-v2.pdf
Size:
6.41 MB
Format:
Adobe Portable Document Format

Collections