Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Disjoint strict singularity of inclusions between rearrangement invariant spaces

dc.contributor.authorHernández, Francisco L.
dc.contributor.authorSánchez de los Reyes, Víctor Manuel
dc.contributor.authorSemenov, Evgeny M.
dc.date.accessioned2023-06-20T17:10:56Z
dc.date.available2023-06-20T17:10:56Z
dc.date.issued2001
dc.descriptionThe authors wish to thank the referee for his suggestions and detailed remarks.
dc.description.abstractIt is studied when inclusions between rearrangement invariant function spaces on the interval [0, infinity) are disjointly strictly singular operators. In particular suitable criteria, in terms of the fundamental function, for the inclusions L 1 ∩L ∞ ↪E and E↪L 1 +L ∞ to be disjointly strictly singular are shown. Applications to the classes of Lorentz and Marcinkiewicz spaces are given.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipRFFI
dc.description.sponsorshipUniversities of Russia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19909
dc.identifier.doi10.4064/sm144-3-2
dc.identifier.issn0039-3223
dc.identifier.officialurlhttps://bit.ly/2N3hVnm
dc.identifier.relatedurlhttp://journals.impan.gov.pl/sm/index.html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57903
dc.issue.number3
dc.journal.titleStudia Mathematica
dc.language.isoeng
dc.page.final226
dc.page.initial209
dc.publisherPolish Acad Sciencies Inst Mathematics
dc.relation.projectIDPB97-0240
dc.relation.projectID98-01-00044
dc.relation.projectID3667
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordRearrangement invariant function spaces
dc.subject.keywordInclusion operator
dc.subject.keywordStrictly singular
dc.subject.keywordWeakly compact
dc.subject.keywordLorentz and Marcinkiewicz spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleDisjoint strict singularity of inclusions between rearrangement invariant spaces
dc.typejournal article
dc.volume.number144
dcterms.referencesS. V. Astashkin, Disjoint strict singularity of embeddings of symmetric spaces, Mat. Zametki 65 (1999), 3–14 (in Russian); English transl.: Math. Notes 65 (1999), 3–12. B. Beauzamy, Espaces d'Interpolation Réels: Topologie et Géométrie, Lecture Notes on Math. 666, Springer, 1978. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976. N. L. Carothers and S. J. Dilworth, Geometry of Lorentz spaces via interpolation, in: Longhorn Notes, The University of Texas at Austin, Functional Analysis Seminar (1985-6), 107–133. N. L. Carothers, S. J. Dilworth, Subspaces of L p,q , Proc. Amer. Math. Soc. 104 (1988), 537–545. F. Cobos, A. Manzano, A. Martínez and P. Matos, On interpolation of strictly singular operators, strictly cosingular operators and related operator ideals, Proc. Roy. Soc. Edinburgh, to appear. cf. A. García del Amo, F. L. Hernández and C. Ruiz, Disjointly strictly singular operators and interpolation, ibid. 126 (1996), 1011–1026. A. García del Amo, F. L. Hernández, V. M. Sánchez and E. M. Semenov, Disjointly strictly-singular inclusions between rearrangement invariant spaces, J. London Math. Soc. 62 (2000), 239–252. F. L. Hernández and B. Rodríguez-Salinas, On ℓ p -complemented copies in Orlicz spaces II, Israel J. Math. 68 (1989), 27–55. N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), 253–277. N. J. Kalton, personal communication, 1996. A. Kamińska and M. Mastyło, The Dunford-Pettis property for symmetric spaces, Canad. J. Math. 52 (2000), 789–803. S. G. Kreĭn, Ju. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Amer. Math. Soc., Providence, 1982. S. A. Kuzin-Aleksinskiĭ, Weakly compact embeddings of symmetric spaces, Siberian Math. J. 28 (1987), 111–113. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, Springer, 1977. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Function Spaces, Springer, 1979. S. Ya. Novikov, Boundary spaces for inclusion map between rearrangement invariant spaces, Collect. Math. 44 (1993), 211–215. S. Ya. Novikov, The differences of inclusion map operators between rearrangement invariant spaces on finite and σ -finite measure spaces, ibid. 48 (1997), 725–732. E. I. Pustylnik, Some structural properties of the totality of intermediate spaces of a Banach couple, in: Theory of Operators in Function Spaces, Voronezh Gos. Univ., 1983, 80–89 (in Russian). D. Przeworska-Rolewicz and S. Rolewicz, Equations in Linear Spaces, Polish Sci. Publ., Warszawa, 1968. J. Y. T. Woo, On modular sequence spaces, Studia Math. 48 (1973), 271–289.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SanchezVictorM06.pdf
Size:
230.54 KB
Format:
Adobe Portable Document Format

Collections