Semantic Knowledge Representation for Strategic Interactions in Dynamic Situations
dc.contributor.author | Calvo Tapia, Carlos | |
dc.contributor.author | Villacorta Atienza, José Antonio | |
dc.contributor.author | Díez Hermano, Sergio | |
dc.contributor.author | Khoruzkho, Maxim | |
dc.contributor.author | Lobov, Sergey | |
dc.contributor.author | Potapov, Ivan | |
dc.contributor.author | Sánchez Jiménez, Abel | |
dc.contributor.author | Makarov Slizneva, Valeriy | |
dc.date.accessioned | 2024-01-26T23:06:42Z | |
dc.date.available | 2024-01-26T23:06:42Z | |
dc.date.issued | 2020 | |
dc.description | This work was supported by the Russian Science Foundation (project 19-12-00394) and by the Spanish Ministry of Science, Innovation and Universities (grant FIS2017-82900-P). | |
dc.description.abstract | Evolved living beings can anticipate the consequences of their actions in complex multilevel dynamic situations. This ability relies on abstracting the meaning of an action. The underlying brain mechanisms of such semantic processing of information are poorly understood. Here we show how our novel concept, known as time compaction, provides a natural way of representing semantic knowledge of actions in time-changing situations. As a testbed, we model a fencing scenario with a subject deciding between attack and defense strategies. The semantic content of each action in terms of lethality, versatility, and imminence is then structured as a spatial (static) map representing a particular fencing (dynamic) situation. The model allows deploying a variety of cognitive strategies in a fast and reliable way. We validate the approach in virtual reality and by using a real humanoid robot. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.department | Depto. de Biodiversidad, Ecología y Evolución | |
dc.description.faculty | Fac. de Ciencias Biológicas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Russian Science Foundation | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.status | pub | |
dc.identifier.citation | Calvo Tapia, Carlos, et al. «Semantic Knowledge Representation for Strategic Interactions in Dynamic Situations». Frontiers in Neurorobotics, vol. 14, febrero de 2020, p. 4. https://doi.org/10.3389/fnbot.2020.00004. | |
dc.identifier.doi | 10.3389/fnbot.2020.00004 | |
dc.identifier.issn | 1662-5218 | |
dc.identifier.officialurl | https://doi.org/10.3389/fnbot.2020.00004 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/95676 | |
dc.issue.number | 4 | |
dc.journal.title | Frontiers in Neurorobotics | |
dc.language.iso | eng | |
dc.publisher | Frontiers | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-82900-P/ES/LA COMPACTACION DEL TIEMPO EN EL PROCESAMIENTO DE SITUACIONES DINAMICAS COMO FENOMENO BIOFISICO UNIFICADOR DE LA COGNICION PRIMORDIAL EN HUMANOS Y ROBOTS/ | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51:57 | |
dc.subject.keyword | Cognitive maps | |
dc.subject.keyword | Manipulation of objects | |
dc.subject.keyword | Dynamical systems | |
dc.subject.keyword | Semantic description | |
dc.subject.keyword | Neural networks | |
dc.subject.ucm | Biomatemáticas | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 2404 Biomatemáticas | |
dc.title | Semantic Knowledge Representation for Strategic Interactions in Dynamic Situations | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 14 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7de9bed2-b9e9-42b3-a058-9fd2ef09f4b4 | |
relation.isAuthorOfPublication | 21b23d2b-75f8-4803-9370-4e88539b81cc | |
relation.isAuthorOfPublication | 8aa7447f-ba39-432e-a038-0bdac92cfebc | |
relation.isAuthorOfPublication | ff846d72-46f4-41b1-8aaf-451177e6e1f8 | |
relation.isAuthorOfPublication | a5728eb3-1e14-4d59-9d6f-d7aa78f88594 | |
relation.isAuthorOfPublication.latestForDiscovery | 7de9bed2-b9e9-42b3-a058-9fd2ef09f4b4 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Semantic_Knowledge_Representation.pdf
- Size:
- 1.25 MB
- Format:
- Adobe Portable Document Format