Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the pythagoras numbers of real analytic set germs.

dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T09:33:41Z
dc.date.available2023-06-20T09:33:41Z
dc.date.issued2005
dc.description.abstractWe Show that (i) the Pythagoras number of a real analytic set germ is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii) every real analytic curve germ is contained in a real analytic surface germ with the same Pythagoras number (or Pythagoras number 2 if the curve is Pythagorean). This gives new examples and counterexamples concerning sums of squares and positive semidefinite analytic function germs.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGAAR
dc.description.sponsorshipRAAG
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15159
dc.identifier.issn0037-9484
dc.identifier.officialurlhttp://smf.emath.fr/en/Publications/Bulletin/
dc.identifier.relatedurlhttp://smf.emath.fr/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49907
dc.issue.number3
dc.journal.titleBulletin de la Société Mathématique de France
dc.language.isoeng
dc.page.final362
dc.page.initial349
dc.publisherSociété Mathématique de France
dc.relation.projectIDBFM2002-04797
dc.relation.projectIDHPRN-CT-2001-00271
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordPythagoras number
dc.subject.keywordsum of squares
dc.subject.keywordM. Artin’s approximation.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the pythagoras numbers of real analytic set germs.
dc.typejournal article
dc.volume.number133
dcterms.referencesAbhyankar (S.S.) – Resolution of singularities of embedded algebraic surfaces, 2nd, enlarged ed., Springer Monographs in Math., Springer Ver- lag, Berlin-Heidelberg-NewYork, 1998. Andradas (C.), Br¨ocker (L.) & Ruiz (J.M.) – Constructible Sets in Real Geometry, Ergeb. Math. Grenzgeb., vol. 33, Springer Verlag, Berlin- Heidelberg-NewYork, 1996. Becker (J.) & Gurjar (R.) – Curves with large tangent space, Trans. Amer. Math. Soc., t. 242 (1975), pp. 285–296. Bochnak (J.), Coste (M.) & Roy (M.-F.) – Real Algebraic Geome- try, Ergeb. Math. Grenzgeb., vol. 36, Springer Verlag, Berlin-Heidelberg- New York, 1998. Bourbaki (N.) – Commutative Algebra, Hermann, Paris, 1972. Campillo (A.) & Ruiz (J.M.) – Some Remarks on Pythagorean Real Curve Germs, J. Algebra, t. 128 (1990), pp. 271–275. Choi (M.D.), Dai (Z.D.), Lam (T.Y.) & Reznick (B.) – The Pythago- ras number of some affine algebras and local algebras, J. reine angew. Math., t. 336 (1982), pp. 45–82. Fernando (J.F.) – On the Pythagoras numbers of real analytic rings, J. Algebra, t. 243 (2001), pp. 321–338. Sums of squares in real analytic rings, Trans. Amer. Math. Soc., t. 354 (2002), pp. 1909–1919. Analytic surface germs with minimal Pythagoras number, Math. Z., t. 244 (2003), pp. 725–752. Fernando (J.F.) & Quarez (R.) – Some remarks on the computation of Pythagoras numbers of real irreducible algebroid curves through Gram matrices, J. Algebra, t. 274 (2004), pp. 64–67. Fernando (J.F.) & Ruiz (J.M.) – Positive semidefinite germs on the cone, Pacific J. Math., t. 205 (2002), pp. 109–118. Hironaka (H.) – Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., t. 79 (1964), pp. 109–123, 205–326. de Jong (T.) & Pfister (G.) – Local Analytic Geometry, basic the- ory and applications, Advanced Lectures in Mathematics, Vieweg Verlag, Braunschweig-Wiesbaden, 2000. Kurke (H.), Mostowski (T.), Pfister (G.), Popescu (D.) & Roczen (M.) – Die Approximationseigenschaft lokaler Ringe, Lect. Notes in Math., vol. 634, Springer Verlag, 1978. Merrien (J.) – Un th´eor`eme des z´eros pour les id´eaux de s´eries formelles `a coefficients r´eels, C. R. Acad. Sci. Paris S´er. A-B, t. 276 (1973), pp. 1055– 1058. Ortega (J.) – On the Pythagoras number of a real irreducible algebroid curve, Math. Ann., t. 289 (1991), pp. 111–123. Quarez (R.) – Pythagoras numbers of real algebroid curves and Gram matrices, J. Algebra, t. 238 (2001), pp. 139–158.
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
11.pdf
Size:
180.23 KB
Format:
Adobe Portable Document Format

Collections