Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

n-Dimensional overlap functions

dc.contributor.authorGómez González, Daniel
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorBustince, Humberto
dc.contributor.authorBarrenechea, Edurne
dc.date.accessioned2023-06-19T13:28:04Z
dc.date.available2023-06-19T13:28:04Z
dc.date.issued2014
dc.description.abstractIn this paper we introduce the definition of n-dimensional overlap functions and we justify the axiomatization proposed in its definition. Basically, these functions allow to measure the degree of overlapping of several classes in a given classification system and for any given object. We also show a construction method for this class of functions, studying its relationships with the properties of migrativity, homogeneity and Lipschitz continuity. Finally, we propose an example where the use of n-dimensional overlap functions provides better results than those obtained with the commonly used product t-norm.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28381
dc.identifier.citationGómez, D., Rodríguez, J.T., Montero, J., Bustince, H., Barrenechea, E.: n-Dimensional overlap functions. Fuzzy Sets and Systems. 287, 57-75 (2016). https://doi.org/10.1016/j.fss.2014.11.023
dc.identifier.doi10.1016/j.fss.2014.11.023
dc.identifier.issn0165-0114
dc.identifier.officialurlhttps//doi.org/10.1016/j.fss.2014.11.023
dc.identifier.relatedurlhttp://ac.els-cdn.com/S0165011414005417/1-s2.0-S0165011414005417-main.pdf?_tid=9ea4b8d0-b376-11e4-acf8-00000aacb35e&acdnat=1423828457_df72990dfd6def6ba70feb65f7f14f9e
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33787
dc.journal.titleFuzzy Sets and Systems
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDs TIN2012-32482
dc.relation.projectIDTIN2013-40765-P
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22
dc.subject.keywordAggregation operators
dc.subject.keywordOverlap functions
dc.subject.keywordGrouping functions
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titlen-Dimensional overlap functionsen
dc.typejournal article
dcterms.references[1] A. Amo, J. Montero, E. Molina, Representation of consistent recursive rules, Eur. J. Oper. Res. 130 (2001) 29–53. [2] A. Amo, D. Gomez, J. Montero, G. Biging, Relevance and redundancy in fuzzy classification systems, Mathw. Soft Comput. 8 (2001) 203–216. [3] B. Bedregal, G.P. Dimuro, H. Bustince, E. Barrenechea, New results on overlap and grouping functions, Inf. Sci. 249 (2013) 148–170. [4] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions, a Guide to Practitioners, Springer-Verlag, Berlin, 2007. [5] H. Bustince, J. Montero, R. Mesiar, Migrativity of aggregation functions, Fuzzy Sets Syst. 160 (2009) 766–777. [6] H. Bustince, J. Fernandez, R. Mesiar, J. Montero, R. Orduna, Overlap functions, Nonlinear Anal., Theory Methods Appl. 72 (2010) 1488–1499. [7] H. Bustince, J. Montero, E. Barrenechea, M. Pagola, Semiautoduality in a restricted family of aggregation operators, Fuzzy Sets Syst. 158 (2007) 1360–1377. [8] H. Bustince, M. Pagola, R. Mesiar, E. Hullermeier, F. Herrera, J. Montero, R. Orduna, Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparisons, IEEE Trans. Fuzzy Syst. 20 (2012) 405–415. [9] T. Calvo, A. Kolesárová, M. Komorníková, R. Mesiar, Aggregation operators, properties, classes and construction methods, in: T. Calvo, et al. (Eds.), Aggregation Operators New Trends and Applications, Physica-Verlag, Heidelberg, 2002, pp. 3–104. [10] T. Calvo, G. Mayor, J. Torrens, J. Suñer, M. Mas, M. Carbonell, Generation of weighting triangles associated with aggregation functions, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8 (4) (2000) 417–451. [11] V. Cutello, J. Montero, Hierarchical aggregation of OWA operators: basic measures and related computational problems, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 3 (1995) 17–26. [12] V. Cutello, J. Montero, Recursive families of OWA operators, in: Proceedings FUZZ-IEEE Conference, IEEE Press, Piscataway, 1994, pp. 1137–1141. [13] V. Cutello, J. Montero, Recursive connective rules, Int. J. Intell. Syst. 14 (1999) 3–20. [14] G.P. Dimuro, B.C. Bedregal, Archimedean overlap functions: the ordinal sum and the cancellation, idempotency and limiting properties, Fuzzy Sets Syst. 252 (2014) 39–54. [15] F. Durante, P. Sarkoci, A note on the convex combinations of triangular norms, Fuzzy Sets Syst. 159 (2008) 77–80. [16] M. Elkano, M. Galar, J. Sanz, A. Fernández, E. Barrenechea, F. Herrera, H. Bustince, Enhancing multi-class classification in FARC-HD fuzzy classifier: on the synergy between n-dimensional overlap functions and One-vs-One strategy, IEEE Trans. Fuzzy Syst. (2014), http://dx.doi. org/10.1109/TFUZZ.2014.2370677, in press. [17] D. Gómez, J. Montero, A discussion of aggregation functions, Kybernetika 40 (2004) 107–120. [18] D. Gómez, K. Rojas, J.T. Rodríguez, J. Montero, G. Beliakov, Consistency and stability in aggregation operators: an application to missing data problems, Int. J. Comput. Intell. Syst. 7 (2014) 595–604. [19] M. Grabisch,J. Marichal, R. Mesiar, E. Pap, Aggregation Functions, Encyclopedia of Mathematics and Its Applications, Cambridge University, New York, 2009. [20] H. Ishibuchi, T. Nakashima, Effect of rule weights in fuzzy rule-based classification systems, IEEE Trans. Fuzzy Syst. 9 (4) (2001) 506–515. [21] H. Ishibuchi, T. Nakashima, M. Nii, Classification and Modeling with Linguistic Information Granules: Advanced Approaches to Linguistic Data Mining, Springer-Verlag, Berlin, 2004. [22] H. Ishibuchi, T. Yamamoto, Rule weight specification in fuzzy rule-based classification systems, IEEE Trans. Fuzzy Syst. 13 (2005) 428–435. [23] A. Jurio, H. Bustince, M. Pagola, A. Pradera, R.R. Yager, Some properties of overlap and grouping functions and their application to image thresholding, Fuzzy Sets Syst. 229 (2013) 69–90. [24] A. Kolesárová, Sequential aggregation, in: M. González, et al. (Eds.), Proceedings of the Fifth International Summer School on Aggregation Operators, AGOP, Universitat de les Illes Balears, Palma de Mallorca, 2009, pp. 183–187. [25] A. Kolmogorov, Sur la notion de moyenne, Atti R. Accad. Naz. Lincei 12 (1930) 388–391. [26] M.S. Hosseini, A.M. Eftekhari-Moghadam, Fuzzy rule-based reasoning approach for event detection and annotation of broadcast soccer video, Appl. Soft Comput. 13 (2) (2013) 846–866. [27] J. Montero, D. Gómez, H. Bustince, On the relevance of some families of fuzzy sets, Fuzzy Sets Syst. 158 (2007) 2429–2442. [28] M. Nagumo, Über eine Klasse der Mittelwerte, Jpn. J. Math. 7 (1930) 71–79. [29] K. Rojas, D. Gómez, J.T. Rodríguez, J. Montero, Some properties of consistency in the families of aggregation functions, in: P. Melo-Pinto, P. Couto, C. Serodio, J. Fodor, B. De Baets (Eds.), Proceedings of Advances in Intelligent and Soft Computing, vol. 107, Springer, Berlin, 2011, pp. 169–176. [30] K. Rojas, D. Gómez, J.T. Rodríguez, J. Montero, Strict stability in aggregation operators, Fuzzy Sets Syst. 228 (2013) 44–63. [31] K. Rojas, D. Gómez, J.T. Rodríguez, J. Montero A, Valdivia, F. Paiva, Development of child’s home environment indexes based on consistent families of aggregation operators with prioritized hierarchical information, Fuzzy Sets Syst. 241 (2014) 41–60. [32] J. Sanz, M. Galar, A. Jurio, A. Brugos, M. Pagola, H. Bustince, Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system, Appl. Soft Comput. 20 (2014) 103–111. [33] A. Stupnanova, A. Kolesárová, Associative n-dimensional copulas, Kybernetika 47 (2011) 93–99. [34] R.R. Yager, A. Rybalov, Noncommutative self-identity aggregation, Fuzzy Sets Syst. 85 (1997) 73–82.
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero102.pdf
Size:
770.36 KB
Format:
Adobe Portable Document Format

Collections