A generalization of histogram type estimators
dc.contributor.author | Río Bueno , Manuel del | |
dc.contributor.author | Delicado, Pedro | |
dc.date.accessioned | 2023-06-20T09:44:05Z | |
dc.date.available | 2023-06-20T09:44:05Z | |
dc.date.issued | 2003-02 | |
dc.description.abstract | We introduce nonparametric density estimators that generalize the classical histogram and frequency polygon. The new estimators are expressed as linear combinations of density functions that are piecewise polynomials, where the coefficients are optimally chosen in order to minimize an approximate version of the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators, and study their performance in a simulation study. | |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17618 | |
dc.identifier.doi | 10.1080/1048525031000074523 | |
dc.identifier.issn | 1048-5252 | |
dc.identifier.relatedurl | http://www.econ.upf.edu/ca/recerca/paper.php?id=422 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50269 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Nonparametric Statistics | |
dc.page.final | 135 | |
dc.page.initial | 113 | |
dc.publisher | American Statistical Association | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 519.8 | |
dc.subject.keyword | Convolution | |
dc.subject.keyword | Frequency polygon | |
dc.subject.keyword | Nonparametric density estimation | |
dc.subject.keyword | Simulation | |
dc.subject.keyword | Splines | |
dc.subject.keyword | Toeplitz matrix | |
dc.subject.keyword | Kerrnel density estimators | |
dc.subject.keyword | Binned data | |
dc.subject.ucm | Investigación operativa (Matemáticas) | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.title | A generalization of histogram type estimators | |
dc.type | journal article | |
dc.volume.number | 15 | |
dcterms.references | Boneva, L. I., Kendall, D. and Stefanov, I. (1971). Spline transformations: Three new diagnostic aids for the statistical data-analyst. J. Roy. Statist. Soc. Ser. B, 33, 1–70. Feller, W. (1971). An Introduction to Probability Theory and its Applications, 2nd ed., Vol. II. J. Wiley, New York. Gajek, L. (1986). On improving density estimators which are not bona fide functions. The Annals of Statistics, 14, 1612–1618. Hall, P. (1982). The influence of rounding errors on some nonparametric estimators of a density and its derivatives. SIAM J. Appl. Math., 42(2), 390–399. Hall, P. and Murison, R. D. (1993). Correcting the negativity of high-order kernel density estimators. Journal of Multivariate Analysis, 47, 103–122. Härdle, W. (1991). Smoothing Techniques with Implementation in S. Springer, New York. Jones, M. C. (1989). Discretized and interpolated kernel density estimates. J. Amer. Statist. Assoc., 84(407), 733–741. Jones, M. C. (1992). Differences and derivatives in kernel estimation. Metrika, 39(6), 335–340. Jones, M. C., Samiuddin, M., Al-Harbey, A. H. and Maatouk, T. A. H. (1998). The edge frequency polygon. Biometrika, 85(1), 235–239. Jones, M. C. and Signorini, D. F. (1997). A comparison of higher-order bias kernel density estimators. Journal of the American Statistical Association, 92, 1063–1073. Marron, J. S. and Wand, M. P. (1992). Exact mean integrated squared error. The Annals of Statistics, 20, 712–736. Minnotte, M. C. (1996). The bias-optimized frequency polygon. Computational Statistics, 11, 35–48. Minnotte, M. C. (1998). Achieving higher-order convergence rates for density estimation with binned data. Journal of the American Statistical Association, 93, 663–672. Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9, 65–78. Schumaker, L. L. (1981). Spline Functions. Basic Theory. J. Wiley, New York. Scott, D. W. (1992). Multivariate Density Estimation. J. Wiley, New York. Scott, D. W. and Sheather, S. J. (1985). Kernel density estimation with binned data. Comm. Statist. Theory Meth., 14, 1353–1359. Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, Methodological, 53, 683–690. Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, London. Simonoff, J. S. (1996). Smoothing Methods in Statistics. Springer, New York. Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London. Waterloo Maple Inc. (1998). Maple V. Release 5.1. Wolfram, S. (1991). Mathematica: A System for Doing Mathematics by Computer, 2nd ed., Addison-Wesley. | |
dspace.entity.type | Publication |