Biocompatibility and levofloxacin delivery of mesoporous materials
Loading...
Official URL
Full text at PDC
Publication date
2013
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
5. Biocompatibility and levofloxacin delivery of mesoporous materials. European Journal of Pharmaceutics and Biopharmaceutics, Vol. 84, Núm. 1, 2013, pp. 115-124. DOI:10.1016/J.EJPB.2012.11.029
Abstract
A comparative study of mesoporous matrices designed for both drug-loading methods, impregnation (IP) and surfactant-assisted drug loading (also denoted as one-pot, OP), has been carried out evaluating their physicochemical characteristics, cell response, drug delivery profiles, and antibacterial activity. Surfactant-free (calcined) and surfactant-templated (non-calcined) mesoporous silica have been used as IP and OP starting matrices, respectively. Both non-calcined and calcined matrices do not exert any cytotoxic effect on osteoblasts. However, non-calcined matrices induce on fibroblasts a significant proliferation delay with morphological alterations and dose-dependent increases in fibroblast size, internal
complexity, and intracellular calcium content but without cell lysis and apoptosis. Residual ethanol and the surface silanol groups in these non-calcined matrices are involved in the observed fibroblast changes. Finally, both IP and OP matrices have been loaded with levofloxacin to compare them as drug delivery systems. Both IP and OP matrices exhibit similar in vitro levofloxacin release profiles, showing an initial fast delivery followed by a sustained release during long time periods. These profiles and the antimicrobial activity results suggest the use of these IP and OP matrices as local drug delivery systems in the osteomyelitis and other bone infection treatments.