Reversible feedback confinement

dc.contributor.authorGranger, Léo
dc.contributor.authorDinis Vizcaíno, Luis Ignacio
dc.contributor.authorHorowitz, Jordan M.
dc.contributor.authorRodríguez Parrondo, Juan Manuel
dc.date.accessioned2023-06-17T21:52:20Z
dc.date.available2023-06-17T21:52:20Z
dc.date.issued2016-09
dc.description© EPLA, 2016. This work has been supported by grants ENFASIS (FIS2011-22644) and TerMic (FIS2014-52486-R) from the Spanish Government. JMH is supported by the Gordon and Betty Moore Foundation through Grant GBMF4343.
dc.description.abstractWe present a feedback protocol that is able to confine a system to a single microstate without heat dissipation. The protocol adjusts the Hamiltonian of the system in such a way that the Bayesian posterior distribution after measurement is in equilibrium. As a result, the whole process satisfies feedback reversibility - the process is indistinguishable from its time reversal- and assures the lowest possible dissipation for confinement. In spite of the whole process being reversible it can surprisingly be implemented in finite time. We illustrate the idea with a Brownian particle in a harmonic trap with increasing stiffness and present a general theory of reversible feedback confinement for systems with discrete states. editor's choice Copyright (C) EPLA, 2016.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipGordon and Betty Moore Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/41909
dc.identifier.doi10.1209/0295-5075/115/50007
dc.identifier.issn0295-5075
dc.identifier.officialurlhttp://dx.doi.org/10.1209/0295-5075/115/50007
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.relatedurlhttps://arxiv.org/abs/1609.06461
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17693
dc.issue.number5
dc.journal.titleEPL
dc.language.isoeng
dc.publisherEPL Association, European Physical Society
dc.relation.projectIDENFASIS (FIS2011-22644)
dc.relation.projectIDTermic (FIS2014-52486-R)
dc.relation.projectIDGBMF4343
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordThermodynamics
dc.subject.keywordInformation
dc.subject.keywordPrinciple
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleReversible feedback confinement
dc.typejournal article
dc.volume.number115
dcterms.references[1] Touchette H. and Lloyd S., Phys. Rev. Lett., 84 (2000) 1156. [2] Cao F. J., Dinis L. and Parrondo J. M. R., Phys. Rev. Lett., 93 (2004) 040603. [3] Lopez B., Kuwada N., Craig E., Long B. and Linke H., Phys. Rev. Lett., 101 (2008) 220601. [4] Abreu D. and Seifert U., EPL, 94 (2011) 10001. [5] Li T., Kheifets S. and Raizen M. G., Nat. Phys., 7 (2011) 527. [6] Gieseler J., Deutsch B., Quidant R. and Novotny L., Phys. Rev. Lett., 109 (2012) 103603. [7] Cohen A., Phys. Rev. Lett., 94 (2005) 118102. [8] Cohen A. and Moerner W., Proc. Natl. Acad. Sci. U.S.A., 103 (2006) 4362. [9] Aspelmeyer M., Kippenberg T. J. and Marquardt F., Rev. Mod. Phys., 86 (2014) 1391. [10] Parrondo J. M. R., Horowitz J. M. and Sagawa T., Nat. Phys., 11 (2015) 131. [11] Sagawa T. and Ueda M., Phys. Rev. Lett., 100 (2008) 080403. [12] Cao F. J. and Feito M., Phys. Rev. E, 79 (2009) 041118. [13] Allahverdyan A. E., Janzing D. and Mahler G., J. Stat. Mech. (2009) P09011. [14] Horowitz J. M. and Vaikuntanathan S., Phys. Rev. E, 82 (2010) 061120. [15] Fujitani Y. and Suzuki H., J. Phys. Soc. Jpn., 79 (2010) 104003. [16] Ponmurugan M., Phys. Rev. E, 82 (2010) 031129. [17] Ito S. and Sagawa T., Phys. Rev. Lett., 111 (2013) 180603. [18] Shiraishi N. and Sagawa T., Phys. Rev. E, 91 (2015) 012130. [19] Horowitz J. M. and Esposito M., Phys. Rev. X, 4 (2014) 031015. [20] Hartich D., Barato A. C. and Seifert U., J. Stat. Mech. (2014) P02016. [21] Granger L., Irreversibility and information, PhD Thesis, Technische Universit¨at Dresden, Dresden, Germany (November 2013). [22] Horowitz J. M. and Parrondo J. M. R., EPL, 95 (2011) 10005. [23] Horowitz J. M. and Parrondo J. M. R., New J. Phys., 13 (2011) 123019. [24] Horowitz J. M. and Parrondo J. M. R., Acta Phys. Pol. B, 44 (2013) 803. [25] Esposito M. and Van Den Broeck C., EPL, 95 (2011) 40004. [26] Jacobs K., Phys. Rev. E, 86 (2012) 040106. [27] Horowitz J. M. and Jacobs K., Phys. Rev. E, 89 (2014) 042134. [28] Cover T. M. and Thomas J. A., Elements of Information Theory, 2nd edition (Wiley-Interscience, New York) 2006. [29] Dembo A. and Zeitouni O., Large Deviations Techniques and Applications, Stochastic Modelling and Applied Probability, Vol. 38 (Springer-Verlag, Berlin, Heidelberg) 2010. [30] Sagawa T. and Ueda M., Phys. Rev. Lett., 102 (2009) 250602. [31] Granger L. and Kantz H., Phys. Rev. E, 84 (2011) 061110. [32] Granger L. and Kantz H., EPL, 101 (2013) 50004. [33] Kutvonen A., Koski J. and Ala-Nissila T., Sci. Rep., 6 (2016) 21126. [34] Koski J., Kutvonen A., Khaymovich I., AlaNissila T. and Pekola J., Phys. Rev. Lett., 115 (2015) 260602. [35] Kim K. H. and Qian H., Phys. Rev. E, 75 (2007) 022102. [36] Munakata T. and Rosinberg M. L., J. Stat. Mech. (2012) P05010. [37] Bauer M., Abreu D. and Seifert U., J. Phys. A: Math. Theor., 45 (2012) 162001. [38] Horowitz J. M., Sagawa T. and Parrondo J. M. R., Phys. Rev. Lett., 111 (2013) 010602. [39] Sandberg H., Delvenne J.-C., Newton N. J. and Mitter S. K., Phys. Rev. E, 90 (2014) 042119. [40] Horowitz J. M. and Sandberg H., New J. Phys., 16 (2014) 125007.
dspace.entity.typePublication
relation.isAuthorOfPublication9e638286-12bd-4e2f-9a53-53f6d3dfb03e
relation.isAuthorOfPublication03f52481-0af3-4e8d-bfb1-c47751e8fea5
relation.isAuthorOfPublication.latestForDiscovery9e638286-12bd-4e2f-9a53-53f6d3dfb03e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RParrondo 08 preprint.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format

Collections