Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Classical distinguishability as an operational measure of polarization

dc.contributor.authorBjörk, G.
dc.contributor.authorde Guise, H.
dc.contributor.authorKlimov, Andrei B.
dc.contributor.authorHoz Iglesias, Pablo de la
dc.contributor.authorSánchez Soto, Luis Lorenzo
dc.date.accessioned2023-06-19T13:31:48Z
dc.date.available2023-06-19T13:31:48Z
dc.date.issued2014-07-23
dc.description© 2014 American Physical Society. The work of G.B. is supported by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), and the Swedish Research Council (VR) through its Linnæus Center of Excellence ADOPT and Contract No. 621-2011-4575. H.d.G. is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. A.K. is thankful for the financial assistance of the Mexican CONACyT (Grant No. 106525). Finally, P.H. and L.L.S.S. acknowledge the support from the Spanish MINECO (Grant No. FIS2011-26786). It is also a pleasure to thank I. Bengtsson, J. J. Monzón, and G. Leuchs for stimulating discussions.
dc.description.abstractWe put forward an operational degree of polarization that can be extended in a natural way to fields whose wave fronts are not necessarily planar. This measure appears as a distance from a state to the set of all of its polarization-transformed counterparts. By using the Hilbert-Schmidt metric, the resulting degree is a sum of two terms: one is the purity of the state and the other can be interpreted as a classical distinguishability, which can be experimentally determined in an interferometric setup. For transverse fields, this reduces to the standard approach, whereas it allows one to get a straight expression for nonparaxial fields.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MINECO
dc.description.sponsorshipSwedish Foundation for International Cooperation in Research and Higher Education (STINT)
dc.description.sponsorshipSwedish Research Council (VR) through its Linnæus Center of Excellence ADOPT
dc.description.sponsorshipNatural Sciences and Engineering Research Council (NSERC) of Canada
dc.description.sponsorshipMexican CONACyT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29366
dc.identifier.doi10.1103/PhysRevA.90.013830
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.90.013830
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33947
dc.issue.number1
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.initial13830
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2011-26786
dc.relation.projectID621-2011-4575
dc.relation.projectID106525
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordHilbert-Schmidt distance
dc.subject.keywordQuantum states
dc.subject.keywordElectromagnetic-fields
dc.subject.keywordUnpolarized radiation
dc.subject.keywordStatistical distance
dc.subject.keywordCorrelation-matrices
dc.subject.keywordRelative entropy
dc.subject.keyword3 dimensions
dc.subject.keywordEntanglement
dc.subject.keywordCoherence.
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleClassical distinguishability as an operational measure of polarization
dc.typejournal article
dc.volume.number90
dcterms.references[1] C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach, (Wiley, New York, 1998). [2] L. Mandel, E.Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). [3] E. A. Ash and G. Nicholls, Nature (London) 237, 510 (1972). [4] D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett., 44, 651 (1984). [5] J. C. Petruccelli, N. J. Moore, and M. A. Alonso, Opt. Commun., 283, 4457 (2010). [6] J. C. Samson, Geophys. J. R. Astron. Soc., 34, 403 (1973). [7] R. Barakat, Opt. Commun., 23, 147 (1977). [8] T. Setälä, M. Kaivola, and A. T. Friberg, Phys. Rev. Lett., 88, 123902 (2002). [9] T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E, 66, 016615 (2002). [10] O. Korotkova and E. Wolf, J. Opt. Soc. Am. A, 21, 2382 (2004). [11] A. Luis, Opt. Commun., 253, 10 (2005). [12] J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, Opt. Commun., 248, 333 (2005). [13] P. Réfrégier and F. Goudail, J. Opt. Soc. Am. A, 23, 671 (2006). [14] M. R. Dennis, J. Opt. Soc. Am. A, 24, 2065 (2007). [15] C. J. R. Sheppard, J. Opt. Soc. Am. A, 28, 2655 (2011). [16] X.-F. Qian and J. H. Eberly, Opt. Lett., 36, 4110 (2011). [17] J. J. Gil, Eur. Phys. J. Appl. Phys., 40, 1 (2007). [18] R. Barakat, J. Mod. Opt., 30, 1171 (1983). [19] G. Björk, J. Söderholm, A. Trifonov, P. Usachev, L. L. Sánchez-Soto, and A. B. Klimov, Proc. SPIE, 4750, 1 (2002). [20] G. Björk, S. Inoue, and J. Söderholm, Phys. Rev. A, 62, 023817 (2000). [21] M. Hillery, Phys. Rev. A, 35, 725 (1987). [22] V. V. Dodonov, O. V. Manko, V. I. Manko, and A. Wünsche, J. Mod. Opt., 47, 633 (2000). [23] P. Marian, T. A. Marian, and H. Scutaru, Phys. Rev. Lett., 88, 153601 (2002). [24] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett., 78, 2275 (1997). [25] P. Marian and T. A. Marian, Phys. Rev. A, 77, 062319 (2008). [26] B. Bellomo, G. L. Giorgi, F. Galve, R. Lo Franco, G. Compagno, and R. Zambrini, Phys. Rev. A, 85, 032104 (2012). [27] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Phys. Rev. A, 71, 062310 (2005). [28] Z. Ma, F.-L. Zhang, and J.-L. Chen, Phys. Lett. A, 373, 3407 (2009). [29] A. Monras and F. Illuminati, Phys. Rev. A, 81, 062326 (2010). [30] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Phys. Rev. A, 76, 042327 (2007). [31] B. Mirbach and H. J. Korsch, Ann. Phys., 265, 80 (1998). [32] S. Gnutzmann and K. Źyczkowski, J. Phys. A, 34, 10123 (2001). [33] A. Wehrl, Rev. Mod. Phys., 50, 221 (1978). [34] V. Vedral, Rev. Mod. Phys., 74, 197 (2002). [35] M. Ohya and D. Petz, Quantum Entropy and Its Use, 2nd ed. (Springer, Berlin, 2004). [36] D. Bures, Trans. Amer. Math. Soc., 135, 199 (1969). [37] A. Uhlmann, Rep. Math. Phys., 9, 273 (1976). [38] W. K. Wootters, Phys. Rev. D, 23, 357 (1981). [39] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72, 3439 (1994). [40] K. Źyczkowski and W. Slomczyński, J. Phys. A, 31, 9095 (1998). [41] V. P. Belavkin, G. M. D’Ariano, and M. Raginsky, J. Math. Phys., 46, 062106 (2005). [42] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010). [43] C. Witte and M. Trucks, Phys. Lett. A, 257, 14 (1999). [44] M. Ozawa, Phys. Lett. A, 268, 158 (2000). [45] R. A. Bertlmann, H. Narnhofer, and W. Thirring, Phys. Rev. A, 66, 032319 (2002). [46] A. B. Klimov, L. L. Sánchez-Soto, E. C. Yustas, J. Söderholm, and G. Björk, Phys. Rev. A, 72, 033813 (2005). [47] A. Luis, J. Opt. Soc. Am. A, 24, 1063 (2007). [48] H. Prakash and N. Chandra, Phys. Rev. A, 4, 796 (1971). [49] G. S. Agarwal, Lett. Nuovo Cimento, 1, 53 (1971). [50] J. Lehner, U. Leonhardt, and H. Paul, Phys. Rev. A, 53, 2727 (1996). [51] R. Simon and N. Mukunda, Phys. Lett. A, 138, 474 (1989). [52] J. F. Cornwell, Group Theory in Physics (Academic, San Diego, 1997), Vol. 1. [53] Arvind, K. S. Mallesh, and N. Mukunda, J. Phys. A, 30, 2417 (1997). [54] D. J. Rowe, B. C. Sanders, and H. de Guise, J. Math. Phys., 40, 3604 (1999). [55] M. R. Dennis, J. Opt. A, 6, S26 (2004). [56] X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, Nat. Commun., 3, 998 (2012). [57] I. Bengtsson and K. Źyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2008). [58] T. Saastamoinen and J. Tervo, J. Mod. Opt., 51, 2039 (2004). [59] O. Gamel and D. F. V. James, J. Opt. Soc. Am. A, 31, 1620 (2014). [60] D. N. Klyshko, Phys. Lett. A, 163, 349 (1992). [61] S. Weigert, J. Phys. A, 30, 8739 (1997).
dspace.entity.typePublication
relation.isAuthorOfPublication88b797ff-cbd7-4498-a9c7-4e39f4fa4776
relation.isAuthorOfPublication.latestForDiscovery88b797ff-cbd7-4498-a9c7-4e39f4fa4776

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Art. 109.pdf
Size:
559.78 KB
Format:
Adobe Portable Document Format

Collections