Classical distinguishability as an operational measure of polarization
dc.contributor.author | Björk, G. | |
dc.contributor.author | de Guise, H. | |
dc.contributor.author | Klimov, Andrei B. | |
dc.contributor.author | Hoz Iglesias, Pablo de la | |
dc.contributor.author | Sánchez Soto, Luis Lorenzo | |
dc.date.accessioned | 2023-06-19T13:31:48Z | |
dc.date.available | 2023-06-19T13:31:48Z | |
dc.date.issued | 2014-07-23 | |
dc.description | © 2014 American Physical Society. The work of G.B. is supported by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), and the Swedish Research Council (VR) through its Linnæus Center of Excellence ADOPT and Contract No. 621-2011-4575. H.d.G. is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. A.K. is thankful for the financial assistance of the Mexican CONACyT (Grant No. 106525). Finally, P.H. and L.L.S.S. acknowledge the support from the Spanish MINECO (Grant No. FIS2011-26786). It is also a pleasure to thank I. Bengtsson, J. J. Monzón, and G. Leuchs for stimulating discussions. | |
dc.description.abstract | We put forward an operational degree of polarization that can be extended in a natural way to fields whose wave fronts are not necessarily planar. This measure appears as a distance from a state to the set of all of its polarization-transformed counterparts. By using the Hilbert-Schmidt metric, the resulting degree is a sum of two terms: one is the purity of the state and the other can be interpreted as a classical distinguishability, which can be experimentally determined in an interferometric setup. For transverse fields, this reduces to the standard approach, whereas it allows one to get a straight expression for nonparaxial fields. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish MINECO | |
dc.description.sponsorship | Swedish Foundation for International Cooperation in Research and Higher Education (STINT) | |
dc.description.sponsorship | Swedish Research Council (VR) through its Linnæus Center of Excellence ADOPT | |
dc.description.sponsorship | Natural Sciences and Engineering Research Council (NSERC) of Canada | |
dc.description.sponsorship | Mexican CONACyT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29366 | |
dc.identifier.doi | 10.1103/PhysRevA.90.013830 | |
dc.identifier.issn | 1050-2947 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevA.90.013830 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33947 | |
dc.issue.number | 1 | |
dc.journal.title | Physical review A | |
dc.language.iso | eng | |
dc.page.initial | 13830 | |
dc.publisher | American Physical Society | |
dc.relation.projectID | FIS2011-26786 | |
dc.relation.projectID | 621-2011-4575 | |
dc.relation.projectID | 106525 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Hilbert-Schmidt distance | |
dc.subject.keyword | Quantum states | |
dc.subject.keyword | Electromagnetic-fields | |
dc.subject.keyword | Unpolarized radiation | |
dc.subject.keyword | Statistical distance | |
dc.subject.keyword | Correlation-matrices | |
dc.subject.keyword | Relative entropy | |
dc.subject.keyword | 3 dimensions | |
dc.subject.keyword | Entanglement | |
dc.subject.keyword | Coherence. | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Classical distinguishability as an operational measure of polarization | |
dc.type | journal article | |
dc.volume.number | 90 | |
dcterms.references | [1] C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach, (Wiley, New York, 1998). [2] L. Mandel, E.Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). [3] E. A. Ash and G. Nicholls, Nature (London) 237, 510 (1972). [4] D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett., 44, 651 (1984). [5] J. C. Petruccelli, N. J. Moore, and M. A. Alonso, Opt. Commun., 283, 4457 (2010). [6] J. C. Samson, Geophys. J. R. Astron. Soc., 34, 403 (1973). [7] R. Barakat, Opt. Commun., 23, 147 (1977). [8] T. Setälä, M. Kaivola, and A. T. Friberg, Phys. Rev. Lett., 88, 123902 (2002). [9] T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E, 66, 016615 (2002). [10] O. Korotkova and E. Wolf, J. Opt. Soc. Am. A, 21, 2382 (2004). [11] A. Luis, Opt. Commun., 253, 10 (2005). [12] J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, Opt. Commun., 248, 333 (2005). [13] P. Réfrégier and F. Goudail, J. Opt. Soc. Am. A, 23, 671 (2006). [14] M. R. Dennis, J. Opt. Soc. Am. A, 24, 2065 (2007). [15] C. J. R. Sheppard, J. Opt. Soc. Am. A, 28, 2655 (2011). [16] X.-F. Qian and J. H. Eberly, Opt. Lett., 36, 4110 (2011). [17] J. J. Gil, Eur. Phys. J. Appl. Phys., 40, 1 (2007). [18] R. Barakat, J. Mod. Opt., 30, 1171 (1983). [19] G. Björk, J. Söderholm, A. Trifonov, P. Usachev, L. L. Sánchez-Soto, and A. B. Klimov, Proc. SPIE, 4750, 1 (2002). [20] G. Björk, S. Inoue, and J. Söderholm, Phys. Rev. A, 62, 023817 (2000). [21] M. Hillery, Phys. Rev. A, 35, 725 (1987). [22] V. V. Dodonov, O. V. Manko, V. I. Manko, and A. Wünsche, J. Mod. Opt., 47, 633 (2000). [23] P. Marian, T. A. Marian, and H. Scutaru, Phys. Rev. Lett., 88, 153601 (2002). [24] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett., 78, 2275 (1997). [25] P. Marian and T. A. Marian, Phys. Rev. A, 77, 062319 (2008). [26] B. Bellomo, G. L. Giorgi, F. Galve, R. Lo Franco, G. Compagno, and R. Zambrini, Phys. Rev. A, 85, 032104 (2012). [27] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Phys. Rev. A, 71, 062310 (2005). [28] Z. Ma, F.-L. Zhang, and J.-L. Chen, Phys. Lett. A, 373, 3407 (2009). [29] A. Monras and F. Illuminati, Phys. Rev. A, 81, 062326 (2010). [30] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Phys. Rev. A, 76, 042327 (2007). [31] B. Mirbach and H. J. Korsch, Ann. Phys., 265, 80 (1998). [32] S. Gnutzmann and K. Źyczkowski, J. Phys. A, 34, 10123 (2001). [33] A. Wehrl, Rev. Mod. Phys., 50, 221 (1978). [34] V. Vedral, Rev. Mod. Phys., 74, 197 (2002). [35] M. Ohya and D. Petz, Quantum Entropy and Its Use, 2nd ed. (Springer, Berlin, 2004). [36] D. Bures, Trans. Amer. Math. Soc., 135, 199 (1969). [37] A. Uhlmann, Rep. Math. Phys., 9, 273 (1976). [38] W. K. Wootters, Phys. Rev. D, 23, 357 (1981). [39] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72, 3439 (1994). [40] K. Źyczkowski and W. Slomczyński, J. Phys. A, 31, 9095 (1998). [41] V. P. Belavkin, G. M. D’Ariano, and M. Raginsky, J. Math. Phys., 46, 062106 (2005). [42] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010). [43] C. Witte and M. Trucks, Phys. Lett. A, 257, 14 (1999). [44] M. Ozawa, Phys. Lett. A, 268, 158 (2000). [45] R. A. Bertlmann, H. Narnhofer, and W. Thirring, Phys. Rev. A, 66, 032319 (2002). [46] A. B. Klimov, L. L. Sánchez-Soto, E. C. Yustas, J. Söderholm, and G. Björk, Phys. Rev. A, 72, 033813 (2005). [47] A. Luis, J. Opt. Soc. Am. A, 24, 1063 (2007). [48] H. Prakash and N. Chandra, Phys. Rev. A, 4, 796 (1971). [49] G. S. Agarwal, Lett. Nuovo Cimento, 1, 53 (1971). [50] J. Lehner, U. Leonhardt, and H. Paul, Phys. Rev. A, 53, 2727 (1996). [51] R. Simon and N. Mukunda, Phys. Lett. A, 138, 474 (1989). [52] J. F. Cornwell, Group Theory in Physics (Academic, San Diego, 1997), Vol. 1. [53] Arvind, K. S. Mallesh, and N. Mukunda, J. Phys. A, 30, 2417 (1997). [54] D. J. Rowe, B. C. Sanders, and H. de Guise, J. Math. Phys., 40, 3604 (1999). [55] M. R. Dennis, J. Opt. A, 6, S26 (2004). [56] X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, Nat. Commun., 3, 998 (2012). [57] I. Bengtsson and K. Źyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2008). [58] T. Saastamoinen and J. Tervo, J. Mod. Opt., 51, 2039 (2004). [59] O. Gamel and D. F. V. James, J. Opt. Soc. Am. A, 31, 1620 (2014). [60] D. N. Klyshko, Phys. Lett. A, 163, 349 (1992). [61] S. Weigert, J. Phys. A, 30, 8739 (1997). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 88b797ff-cbd7-4498-a9c7-4e39f4fa4776 | |
relation.isAuthorOfPublication.latestForDiscovery | 88b797ff-cbd7-4498-a9c7-4e39f4fa4776 |
Download
Original bundle
1 - 1 of 1