Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Dynamics of fluctuations in a fluid below the onset of Rayleigh-Benard convection

dc.contributor.authorOh, Jaechul
dc.contributor.authorOrtiz De Zárate Leira, José María
dc.contributor.authorSengers, Jan V.
dc.contributor.authorAhlers, Guenter
dc.date.accessioned2023-06-20T10:47:56Z
dc.date.available2023-06-20T10:47:56Z
dc.date.issued2004-02
dc.description©2004 The American Physical Society. The research of J. Oh and G. Ahlers was supported by U.S. National Science Foundation Grant No. DMR02-43336. G. Ahlers and J. M. Ortiz de Zárate acknowledge support through a grant under the Del Amo Joint Program of the University of California and the Universidad Complutense de Madrid. The research at the University of Maryland was supported by the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy of the U.S. Department of Energy under Grant No. DE-FG-02-95ER14509.
dc.description.abstractWe present experimental data and their theoretical interpretation for the decay rates of temperature fluctuations in a thin layer of a fluid heated from below and confined between parallel horizontal plates. The measurements were made with the mean temperature of the layer corresponding to the critical isochore of sulfur hexafluoride above but near the critical point where fluctuations are exceptionally strong. They cover a wide range of temperature gradients below the onset of Rayleigh-Benard convection, and span wave numbers on both sides of the critical value for this onset. The decay rates were determined from experimental shadowgraph images of the fluctuations at several camera exposure times. We present a theoretical expression for an exposure-time-dependent structure factor which is needed for the data analysis. As the onset of convection is approached, the data reveal the critical slowing down associated with the bifurcation. Theoretical predictions for the decay rates as a function of the wave number and temperature gradient are presented and compared with the experimental data. Quantitative agreement is obtained if allowance is made for some uncertainty in the small spacing between the plates, and when an empirical estimate is employed for the influence of symmetric deviations from the Oberbeck-Boussinesq approximation which are to be expected in a fluid with its density at the mean temperature located on the critical isochore.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipU.S. National Science Foundation
dc.description.sponsorshipUniversity of California
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipChemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy of the U.S. Department of Energy
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27356
dc.identifier.doi10.1103/PhysRevE.69.021106
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.69.021106
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51243
dc.issue.number2
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDDMR02-43336
dc.relation.projectIDDE-FG-02- 95ER14509
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordThermal-equilibrium
dc.subject.keywordNonequilibrium fluctuations
dc.subject.keywordSulfur-hexafluoride
dc.subject.keywordLight-scattering
dc.subject.keywordCritical-point
dc.subject.keywordInstability
dc.subject.keywordLiquid
dc.subject.keywordViscosity
dc.subject.keywordStability
dc.subject.keywordGravity
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleDynamics of fluctuations in a fluid below the onset of Rayleigh-Benard convection
dc.typejournal article
dc.volume.number69
dcterms.references[1] T.R. Kirkpatrick, E.G.D. Cohen, and J.R. Dorfman, Phys. Rev. A 26, 995 (1982). [2] B.M. Law and J.V. Sengers, J. Stat. Phys. 57, 531 (1989). [3] P.N. Segrè, R.W. Gammon, J.V. Sengers, and B.M. Law, Phys. Rev. A 45, 714 (1992). [4] J.M. Ortiz de Zárate and J.V. Sengers, Phys. Rev. E 66, 036305 (2002). [5] P.N. Segrè, R. Schmitz, and J.V. Sengers, Physica A 195, 31 (1993). [6] A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996). [7] J.M. Ortiz de Zárate, R. Pérez Cordón, and J.V. Sengers, Physica A 291, 113 (2001). [8] J.M. Ortiz de Zárate and J.V. Sengers, Physica A 300, 25 (2001). [9] V. Zaitsev and M.I. Shliomis, Zh. Eksp. Teor. Fiz. 59, 1583 (1970) [Sov. Phys. JETP 32, 866 (1971)]. [10] J.B. Swift and P.C. Hohenberg, Phys. Rev. A 15, 319 (1977). [11] P.C. Hohenberg and J.B. Swift, Phys. Rev. A 46, 4773 (1992). [12] M. Wu, G. Ahlers, and D.S. Cannell, Phys. Rev. Lett. 75, 1743 (1995). [13] J. Oh and G. Ahlers, Phys. Rev. Lett. 91, 094501 (2003). [14] B.M. Law, P.N. Segrè, R.W. Gammon, and J.V. Sengers, Phys. Rev. A 41, 816 (1990). [15] H.N.W. Lekkerkerker and J.P. Boon, Phys. Rev. A 10, 1355 (1974). [16] J.P. Boon, C. Allain, and P. Lallemand, Phys. Rev. Lett. 43, 199 (1979). [17] P. Lallemand and C. Allain, J. Phys. (Paris) 41, 1 (1980). [18] R. Schmitz and E.G.D. Cohen, J. Stat. Phys. 40, 431 (1985). [19] T.R. Kirkpatrick and E.G.D. Cohen, J. Stat. Phys. 33, 639 (1983). [20] C. Allain, H.Z. Cummins, and P. Lallemand, J. Phys. (France) Lett. 39, L473 (1978). [21] Y. Sawada, Phys. Lett. 65A, 5 (1978). [22] A.M. Pedersen and T. Riste, Z. Phys. B 37, 171 (1980). [23] K. Otnes and T. Riste, Phys. Rev. Lett. 44, 1490 (1980). [24] R. Behringer and G. Ahlers, Phys. Lett. 62A, 329 (1977). [25] J. Wesfreid, Y. Pomeau, M. Dubois, C. Normand, and P. Bergé, J. Phys. (France) 39, 725 (1978). [26] A. Oberbeck, Annu. Rev. Phys. Chem. 7, 271 (1879). [27] J. Boussinesq, Théorie Analytique de la Chaleur (Gauthier-Villars, Paris, 1903), Vol. 2. [28] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961). [29] J. K. Platten and J. C. Legros, Convection in Liquids (Springer, Berlin, 1984). [30] P. Manneville, Dissipative Structures and Weak Turbulence (Academic Press, San Diego, 1990). [31] M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993). [32] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959). [33] J.R. de Bruyn, E. Bodenschatz, S.W. Morris, S.P. Trainoff, Y. Hu, D.S. Cannell, and G. Ahlers, Rev. Sci. Instrum. 67, 2043 (1996). [34] D. Brogioli, A. Vailati, and M. Giglio, Phys. Rev. E 61, R1 (2000). [35] S.W. Morris, E. Bodenschatz, D.S. Cannell, and G. Ahlers, Physica D 97, 164 (1996). [36] E. Bodenschatz, W. Pesch, and G. Ahlers, Annu. Rev. Fluid Mech. 32, 709 (2000). [37] R. Graham and H. Pleiner, Phys. Fluids 18, 130 (1975). [38] A. Schluter, D. Lortz, and F.H. Busse, J. Fluid Mech. 23, 129 (1965). [39] J.M. Ortiz de Zárate and L. Muñoz Redondo, Eur. Phys. J. B 21, 135 (2001). [40] S.P. Trainoff and D.S. Cannell, Phys. Fluids 14, 1340 (2002). [41] A. Vailati and M. Giglio, Nature (London) 390, 262 (1997). [42] H. van Beijeren and E.G.D. Cohen, J. Stat. Phys. 53, 77 (1988). [43] A.K. Wyczalkowska and J.V. Sengers, J. Chem. Phys. 111, 1551 (1999). [44] J.H.B. Hoogland, H.R. van den Berg, and N.J. Trappeniers, Physica A 134, 169 (1985). [45] T. Strehlow and E. Vogel, Physica A 161, 101 (1989). [46] J. Lis and P.O. Kellard, Br. J. Appl. Phys. 16, 1099 (1965). [47] H.L. Swinney and D.L. Henry, Phys. Rev. A 8, 2586 (1973). [48] T.K. Lim, H.L. Swinney, K.H. Langley, and T.A. Kachnowski, Phys. Rev. Lett. 27, 1776 (1971). [49] T. K. Lim, Ph.D. thesis, Johns Hopkins University, 1973. [50] V.V. Brunskii, E.E. Totski, and S.P. Nikodimov, High Temp. 19, 366 (1981). [51] J. Kestin and N. Imaishi, Int. J. Thermophys. 6, 107 (1985). [52] F.H. Busse, J. Fluid Mech. 30, 625 (1967).
dspace.entity.typePublication
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication.latestForDiscoveryd2b809b1-3ba2-407e-add2-8b8251e306ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ortiz29libre.pdf
Size:
286.91 KB
Format:
Adobe Portable Document Format

Collections