Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Reduction of dimension of approximate intertial manifolds by symmetry

dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorWang, Bixiang
dc.date.accessioned2023-06-20T17:09:12Z
dc.date.available2023-06-20T17:09:12Z
dc.date.issued1999-10
dc.description.abstractIn this paper, we study approximate inertial manifolds for nonlinear evolution partial differential equations which possess symmetry. The relationship between symmetry and dimensions of approximate inertial manifolds is established. We demonstrate that symmetry can reduce the dimensions of an approximate inertial manifold. Applications for concrete evolution equations are given.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipMinisterio de Educacion y Cultura
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17979
dc.identifier.doi10.1017/S000497270003642X
dc.identifier.issn0004-9727
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=4831588
dc.identifier.relatedurlhttp://journals.cambridge.org/action/login?sessionId=1D97595DB713FA150B5C9A401EC7FCB0.journals
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57854
dc.issue.number2
dc.journal.titleBulletin of the Australian Mathematical Society
dc.language.isoeng
dc.page.final330
dc.page.initial319
dc.publisherCambridge University Press
dc.relation.projectIDPB96-0648
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordGlobal dynamical properties
dc.subject.keywordInertial manifolds
dc.subject.keywordEquations
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleReduction of dimension of approximate intertial manifolds by symmetry
dc.typejournal article
dc.volume.number60
dcterms.referencesFoias, C., Jolly, M.S., Kevrekidis, I.G., Sell, G.R. and Titi, E.S., ‘On the computation of inertial manifolds’, Physics Lett. A 131 (1988), 433–436. Foias, C., Sell, G.R. and Temam, R., ‘Inertial manifolds for nonlinear evolutionary equations’, J. Differential Equations 73 (1988), 309–353. Foias, C., Sell, G.R. and Titi, E.S., ‘Exponential tracking and approximation of inertial manifolds for dissipative equations’, J. Dynamics Differential Eqations 1 (1989), 199–244. Hale, J.K., Asymptotic behaviour of dissipative systems, Math. Surveys and Monographs 25 (American Mathematical Society, Providence, R.I., 1988). Il′yashenko, Ju., ‘Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation’, J. Dynamics Differential Equations 4 (1992), 585–615. Jolly, M.S., Kevrekidis, I.G. and Titi, E.S., ‘Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations’, Phys. D. 44 (1990), 38–60. Nicolaenko, B., Sheurer, B. and Temam, R., ‘Some global dynamical properties of the Kuramoto-Sivashinsky equation: nonlinear stability and attractors’, Phys. D. 16 (1985). 155–183. Nicolaenko, B., Sheurer, B. and Temam, R., ‘Dynamical properties of a class of pattern formation equations’. Comm. Partial Differential Eqations 14 (1989), 245–297. Rodriguez-Bernal, A., ‘Inertial manifolds for dissipative semiflows in Banach spaces’, Appl. Anal. 37 (1990), 95–141. Rodriguez-Bernal, A., ‘On the construction of inertial manifolds under symmetry constraints I: abstract results’, Nonlinear Anal. 19 (1992), 687–700. Rodriguez-Bernal, A., ‘On the construction of inertial manifolds under symmetry constraints II: O(2) constraint and inertial manifolds on thin domains’, J. Math. Pures Appl. 72 (1993), 57–79. Sell, G.R., ‘An optimality condition for approximate inertial manifolds’, in Turbulence in fluid flows: A dynamical system approach (Springer-Verlag, Berlin, Heidelberg, New York, 1993), pp. 165–186. Stuart, A.M., ‘Perturbation theory for infinite dimensional dynamical systems’, in Theory and numerics of ordinary and partial differential equations, (Ainsworth, M. et al., Editors) (Oxford University Press, 1995). Temam, R., Infinite dimensional dynamical systems in mechanics and physics. (Springer-Verlag, Berlin, Heidelberg, New York, 1988).
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal48.pdf
Size:
937.25 KB
Format:
Adobe Portable Document Format

Collections