Isoperimetric-inequalities in the parabolic obstacle problems
Loading...
Download
Official URL
Full text at PDC
Publication date
1992
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
In this paper, we are concerned with the parabolic obstacle problem (u(t)=partial derivative u/partial derivative t [GRAPHICS] (A is a linear second order elliptic operator in divergence form or a nonlinear "pseudo-Laplacian"). We give an isoperimetric inequality for the concentration of u - psi around its maximum. Various consequences are given. In particular, it is proved that u - psi vanishes after a finite time, under a suitable assumption on psi(t) + A-psi + c- psi - f. Other applications are also given. These results are deduced from the study of the particular case psi=0. In this case, we prove that, among all linear second order elliptic operators A, having ellipticity constant 1, all equimeasurable domains OMEGA, all equimeasurable functions f and u0, the choice giving the "most concentrated" solution around its maximum is: A = -DELTA, OMEGA is a ball OMEGA, f and u0 are radially symmetric and decreasing along thc radii of OMEGA. A crucial point in our proof is a pointwise comparison result for an auxiliary one-dimensional unilateral problem. This is carried out by showing that this new problem is well-posed in L(infinity) in the sense of the accretive operators theory.