Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Determination of the semion code threshold using neural decoders

dc.contributor.authorVarona Angulo, Santiago
dc.contributor.authorMartín-Delgado Alcántara, Miguel Ángel
dc.date.accessioned2023-06-16T15:25:57Z
dc.date.available2023-06-16T15:25:57Z
dc.date.issued2020-09-17
dc.description©2020 American Physical Society. We thank G. Dauphinais for useful discussions at the early stage of this research. The authors thankfully acknowledge the resources from the supercomputer "Cierzo," HPC infrastructure of the Centro de Supercomputacion de Aragon (CESAR), and the technical expertise and assistance provided by BIFI (Universidad de Zaragoza). S.V. especially thanks Hector Villarrubia Rojo for computational resources and technical assistance. We acknowledge financial support from the Spanish MINECO grants MINECO/FEDER Projects No. FIS2017-91460-EXP and No. PGC2018-099169-B-I00FIS2018 and from CAM/FEDER Project No. S2018/TCS-4342 (QUITEMAD-CM). The research of M.A.M.-D. has been partially supported by the U.S. Army Research Office through Grant No. W911NF-14-1-0103. S.V. thanks the support of a FPU MECD Grant.
dc.description.abstractWe compute the error threshold for the semion code, the companion of the Kitaev toric code with the same gauge symmetry group Z(2). The application of statistical mechanical mapping methods is highly discouraged for the semion code, since the code is non-Pauli and non-Calderbank-Shor-Steane (CSS). Thus, we use machine learning methods, taking advantage of the near-optimal performance of some neural network decoders: multi-layer perceptrons and convolutional neural networks (CNNs). We find the values p(eff) = 9.5% for uncorrelated bit-flip and phase-flip noise, and p(eff) = 10.5% for depolarizing noise. We contrast these values with a similar analysis of the Kitaev toric code on a hexagonal lattice with the same methods. For convolutional neural networks, we use the ResNet architecture, which allows us to implement very deep networks and results in better performance and scalability than the multilayer perceptron approach. We analyze and compare in detail both approaches and provide a clear argument favoring the CNN as the best suited numerical method for the semion code.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipComunidad de Madrid/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/62618
dc.identifier.doi10.1103/PhysRevA.102.032411
dc.identifier.issn2469-9926
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.102.032411
dc.identifier.relatedurlhttps://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6658
dc.issue.number3
dc.journal.titlePhysical review A
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectID(FIS2017-91460-EXP; PGC2018-099169-B-I00FIS2018)
dc.relation.projectIDQUITEMAD-CM (S2018/TCS-4342)
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordError correcting codes
dc.subject.keywordQuantum
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleDetermination of the semion code threshold using neural decoders
dc.typejournal article
dc.volume.number102
dspace.entity.typePublication
relation.isAuthorOfPublication7fb9323b-bb16-41be-8757-b54fd5e4088a
relation.isAuthorOfPublication1cfed495-7729-410a-b898-8196add14ef6
relation.isAuthorOfPublication.latestForDiscovery7fb9323b-bb16-41be-8757-b54fd5e4088a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martín Delgado Alcántara MÁ 125 LIBRE.pdf
Size:
738.63 KB
Format:
Adobe Portable Document Format

Collections