Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Integrability formulation and bäcklund-transformations for gravitational-fields with symmetries

dc.contributor.authorChinea Trujillo, Francisco Javier
dc.date.accessioned2023-06-21T02:08:57Z
dc.date.available2023-06-21T02:08:57Z
dc.date.issued1981
dc.description© American Physical Society
dc.description.abstractThe Ernst equation for gravitational fields with a two-parameter isometry group is formulated as a vanishing-curvature condition on an SU(2) or SU(1,1) bundle, both in the elliptic and hyperbolic cases. Bäcklund transformations are introduced as a special case of gauge transformations, and strong Bäcklund transformations are obtained in that context.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31192
dc.identifier.doi10.1103/PhysRevD.24.1053
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.24.105
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64980
dc.issue.number4
dc.journal.titlePhysical review D
dc.language.isoeng
dc.page.final1055
dc.page.initial1053
dc.publisherAmer Physical Soc
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordAstronomy & Astrophysics
dc.subject.keywordPhysics
dc.subject.keywordParticles & Fields
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleIntegrability formulation and bäcklund-transformations for gravitational-fields with symmetries
dc.typejournal article
dc.volume.number24
dcterms.references1. D. Maison, Phys. Rev. Lett. 41, 521 (1978);J. Math. Phys. 20, 871 (1979). 2. N, Papanicolaou, J. Math. Phys. 20, 2069 (1979). 3. F. J. Ernst, Phys. Rev. 167, 1175 (1968). 4. Equation (5) has been written as the integrability condition for a nonmanifestly group- covariant linear system in G. Neugebauer, Phys. Lett. 75A, 259 (1980). 5. M. Crampin, Phys. Lett. 66A, 170 (1978). 6. R. Sasaki, Nucl. Phys. B154, 343 (1979). 7. F. J. Chinea, J. Math. Phys. 21, 1588 (1980). 8. Bäcklund transformations for the Ernst equation (5) in the case τ_z ≠ 0 have been investigated in B. K. Harrison, Phys. Rev. Lett. 41, 1197 (1978); 41, 1835(E) (1978). 9. F. J. Chinea, Lett. Math. Phys. (to be published).
dspace.entity.typePublication
relation.isAuthorOfPublicatione4399503-cd94-463f-9f57-413f91e12fc8
relation.isAuthorOfPublication.latestForDiscoverye4399503-cd94-463f-9f57-413f91e12fc8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chinea23.pdf
Size:
106.24 KB
Format:
Adobe Portable Document Format

Collections